Skip to main content
Log in

Domains of definition of Monge-Ampère operators on compact Kähler manifolds

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let (X, ω) be a compact Kähler manifold. We introduce and study the largest set DMA(X, ω) of ω-plurisubharmonic (psh) functions on which the complex Monge-Ampère operator is well defined. It is much larger than the corresponding local domain of definition, though still a proper subset of the set PSH(X, ω) of all ω-psh functions. We prove that certain twisted Monge-Ampère operators are well defined for all ω-psh functions. As a consequence, any ω-psh function with slightly attenuated singularities has finite weighted Monge-Ampère energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bedford E. and Taylor B.A. (1976). The Dirichlet problem for a complex Monge-Ampère equation. Invent. Math. 37(1): 1–44

    Article  MATH  MathSciNet  Google Scholar 

  2. Bedford E. and Taylor B.A. (1978). Variational properties of the complex Monge-Ampère equation. I. Dirichlet principle. Duke Math. J. 45(2): 375–403

    Article  MATH  MathSciNet  Google Scholar 

  3. Bedford E. and Taylor B.A. (1982). A new capacity for plurisubharmonic functions. Acta Math. 149(1–2): 1–40

    Article  MATH  MathSciNet  Google Scholar 

  4. Bedford E. and Taylor B.A. (1987). Fine topology, Šilov boundary and (dd c)n. J. Funct. Anal. 72(2): 225–251

    Article  MATH  MathSciNet  Google Scholar 

  5. Blocki Z. (2004). On the definition of the Monge-Ampère operator in \({\mathbb{C}}^2\). Math. Ann. 328(3): 415–423

    Article  MATH  MathSciNet  Google Scholar 

  6. Blocki Z. (2006). The domain of definition of the complex Monge-Ampère operator. Am. J. Math. 128(2): 519–530

    Article  MATH  MathSciNet  Google Scholar 

  7. Blocki Z. and Kolodziej S. (2007). On regularization of plurisubharmonic functions on manifolds. Proc. Am. Math. Soc. 135: 2089–2093

    Article  MATH  MathSciNet  Google Scholar 

  8. Cegrell U. (1998). Pluricomplex energy. Acta Math. 180(2): 187–217

    Article  MATH  MathSciNet  Google Scholar 

  9. Cegrell U. (2004). The general definition of the complex Monge-Ampère operator. Ann. Inst. Fourier (Grenoble) 54(1): 159–179

    MathSciNet  Google Scholar 

  10. Demailly J.-P. (1992). Regularization of closed positive currents and intersection theory. J. Algebraic Geom. 1(3): 361–409

    MATH  MathSciNet  Google Scholar 

  11. Demailly, J.-P.: Monge-Ampère operators, Lelong numbers and intersection theory. Complex analysis and geometry, pp. 115–193, Univ. Ser. Math. Plenum, New York (1993)

  12. Eyssidieux, P., Guedj, V., Zeriahi, A.: Singular Kähler–Einstein metrics. Preprint arXiv math.AG/0603431

  13. Fornæss J.E. and Sibony N. (1995). Oka’s inequality for currents and applications. Math. Ann. 301(3): 399–419

    Article  MathSciNet  Google Scholar 

  14. Guedj V. and Zeriahi A. (2005). Intrinsic capacities on compact Kähler manifolds. J. Geom. Anal. 15(4): 607–639

    MATH  MathSciNet  Google Scholar 

  15. Guedj, V., Zeriahi, A.: The weighted Monge-Ampère energy of quasiplurisubharmonic functions. J. Funct. Anal. (2007, to appear)

  16. Hörmander, L.: Notions of convexity. Progress in Mathematics, 127. Birkhäuser Boston, Inc., Boston, MA, viii+414 pp (1994)

  17. Kolodziej S. (1998). The complex Monge-Ampère equation. Acta Math. 180(1): 69–117

    Article  MATH  MathSciNet  Google Scholar 

  18. Kolodziej S. (2003). The Monge-Ampère equation on compact Kähler manifolds. Indiana Univ. Math. J. 52(3): 667–686

    Article  MATH  MathSciNet  Google Scholar 

  19. Sibony N. (1985). Quelques problèmes de prolongement de courants en analyse complexe. Duke Math. J. 52(1): 157–197

    Article  MATH  MathSciNet  Google Scholar 

  20. Siu Y.T. (1974). Analyticity of sets associated to Lelong numbers and the extension of closed positive currents. Invent. Math. 27: 53–156

    Article  MATH  MathSciNet  Google Scholar 

  21. Tian, G.: Canonical metrics in Kähler geometry. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2000)

  22. Xing, Y.: The general definition of the complex Monge-Ampère operator on compact Kähler manifolds. Preprint arXiv:0705.2099

    Google Scholar 

  23. Yau S.T. (1978). On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I. Commun. Pure Appl. Math. 31(3): 339–411

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Coman.

Additional information

Dan Coman was partially supported by the NSF Grant DMS 0500563.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coman, D., Guedj, V. & Zeriahi, A. Domains of definition of Monge-Ampère operators on compact Kähler manifolds. Math. Z. 259, 393–418 (2008). https://doi.org/10.1007/s00209-007-0233-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-007-0233-1

Mathematics Subject Classification (2000)

Navigation