Skip to main content
Log in

Poles of the topological zeta function associated to an ideal in dimension two

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

To an ideal in \({\mathbb{C}[x,y]}\) one can associate a topological zeta function. This is an extension of the topological zeta function associated to one polynomial. But in this case we use a principalization of the ideal instead of an embedded resolution of the curve. In this paper we will study two questions about the poles of this zeta function. First, we will give a criterion to determine whether or not a candidate pole is a pole. It turns out that we can know this immediately by looking at the intersection diagram of the principalization, together with the numerical data of the exceptional curves. Afterwards we will completely describe the set of rational numbers that can occur as poles of a topological zeta function associated to an ideal in dimension two. The same results are valid for related zeta functions, as for instance the motivic zeta function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramovich, D., Karu, K., Matsuki, K., Włodarczyk, J.: Torification and factorization of birational maps. J. Amer. Math. Soc. 15, 531–572 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Denef, J.: The rationality of the Poincaré series associated to the p-adic points on a variety. Invent. Math. 77, 1–23 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  3. Denef, J.: On the degree of Igusa’s local zeta function. Amer. J. Math. 109, 991–1008 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  4. Denef, J., Loeser, F.: Caractéristiques d’ Euler-Poincaré, fonctions zêta locales, et modifications analytiques. J. Amer. Math. Soc. 5, 705–720 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. Denef, J., Loeser, F.: Motivic Igusa zeta functions. J. Algebraic Geomet. 7, 505–537 (1998)

    MATH  MathSciNet  Google Scholar 

  6. Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero. Ann. Math. 79, 109–326 (1964)

    Article  MathSciNet  Google Scholar 

  7. Igusa, J.: Complex powers and asymptotic expansions I. J. Reine Angew. Math. 268/269, 110–130 (1974)

    MathSciNet  Google Scholar 

  8. Igusa, J.: Complex powers and asymptotic expansions II. ibid. 278/279, 307–321 (1975)

    MathSciNet  Google Scholar 

  9. Jouanolou, J.-P.: Théorèmes de Bertini et applications. Progr. Math. 42. Birkhäuser, Boston (1983)

    Google Scholar 

  10. Loeser, F.: Fonctions d’ Igusa p-adiques et polynômes de Bernstein. Amer. J. Math. 110, 1–21 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lemahieu, A., Segers, D., Veys, W.: On the poles of topological zeta functions. Proc. Amer. Math. Soc. 134, 3429–3436 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Meuser, D.: On the rationality of certain generating functions. Math. Ann. 256, 303–310 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  13. Rodrigues, B.: On the geometric determination of the poles of Hodge and motivic zeta functions. J. Reine Angew. Math. 578, 129–146 (2005)

    MATH  MathSciNet  Google Scholar 

  14. Rodrigues, B., Veys, W.: Poles of zeta functions on normal surfaces. Proc. London Math. Soc. 87, 164–196 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Segers, D.: On the smallest poles of Igusa’s p-adic zeta functions. Math. Z. 252, 429–455 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Segers, D., Veys, W.: On the smallest poles of topological zeta functions. Compositio Math. 140, 130–144 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Veys, W.: On the poles of Igusa zeta functions for curves. J. Lond. Math. Soc. 41, 27–32 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  18. Veys, W.: Relations between numerical data of an embedded resolution. Amer. J. Math. 113, 573–592 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  19. Veys, W.: Determination of the poles of the topological zeta function for curves. Manuscripta Math. 87, 435–448 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  20. Veys, W.: Arc spaces, motivic integration and stringy invariants. Advanced Studies in Pure Mathematics, Proceedings of “Singularity Theory and its applications, Sapporo (Japan), 16–25 September 2003”, 529–572 (2006)

  21. Veys, W., Zuniga-Galindo, W.A.: Zeta functions for analytic mappings, log-principalization of ideals, and Newton polyhedra. Trans. Amer. Math. Soc. (to appear)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lise Van Proeyen.

Additional information

The research was partially supported by the Fund of Scientific Research—Flanders (G.0318.06).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Proeyen, L., Veys, W. Poles of the topological zeta function associated to an ideal in dimension two. Math. Z. 260, 615–627 (2008). https://doi.org/10.1007/s00209-007-0291-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-007-0291-4

Mathematics Subject Classification (2000)

Navigation