Skip to main content
Log in

Stickelberger elements, Fitting ideals of class groups of CM-fields, and dualisation

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper, we systematically construct abelian extensions of CM-fields over a totally real field whose Stickelberger elements are not in the Fitting ideals of the class groups. Our evidence indicates that Pontryagin duals of class groups behave better than the class groups themselves. We also explore the behaviour of Fitting ideals under projective limits and dualisation in a somewhat broader context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Basili, R.: On the irreducibility of varieties of commuting matrices. J. Pure Appl. Algebra 149, 107–120 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cornacchia, P., Greither, C.: Fitting ideals of class groups of real fields with prime power conductor. J. Number Theorem 73, 459–471 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Deligne, P., Ribet, K.: Values of abelian L-functions at negative integers over totally real fields. Invent. Math. 59, 227–286 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  4. Greither, C.: Computing Fitting ideals of Iwasawa modules. Math. Zeit. 246, 733–767 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Greither, C.: Determining Fitting ideals of minus class groups via the equivariant Tamagawa number conjecture. Compos. Math. 143, 1399–1426 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Guralnick, R.: A note on commuting pairs of matrices. Linear Multilinear Algebra 31, 71–75 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Iwasawa, K.: On \({\mathbb{Z}_l}\) -extensions of algebraic number fields. Ann. Math. 98(2), 246–326 (1973)

    Article  MathSciNet  Google Scholar 

  8. Jensen, C.U.: Les foncteurs dérivés de \({\varprojlim}\) et leurs applications en théorie des modules. Lecture Notes in Mathematics, vol. 254. Springer, Heidelberg (1972)

  9. Kurihara, M.: Iwasawa theory and Fitting ideals. J. Reine Angew. Math. 561, 39–86 (2003)

    MATH  MathSciNet  Google Scholar 

  10. Kurihara, M.: On the structure of ideal class groups of CM fields. Documenta Math. Extra Vol. Kato 539–563 (2003)

  11. Motzkin, T.S., Taussky, O.: Pairs of matrices with property L, II. Trans. Am. Math. Soc. 80, 387–401 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  12. Mazur, B., Wiles, A.: Class fields of abelian extensions of \({\mathbb{Q}}\) . Invent. Math. 76, 179–330 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  13. Neukirch, J., Schmidt, A., Wingberg, K.: Cohomology of number fields, Grundlehren, vol. 323. Springer, Heidelberg (2000)

    Google Scholar 

  14. Popescu, C.: Stark’s question and a refinement of Brumer’s conjecture extrapolated to the function field case. Compos. Math. 140, 631–646 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Shalev, A.: On the number of generators of ideals in local rings. Adv. Math. 59, 82–94 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  16. Tate, J.: Les conjectures de Stark sur les fonctions L d’Artin en s  =  0. Progress in Math., vol. 47. Birkhäuser (1984)

  17. Washington, L.: Introduction to cyclotomic fields. Springer GTM, 2nd edn (1997), vol. 83. Springer, Heidelberg (1982)

  18. Wiles, A.: The Iwasawa conjecture for totally real fields. Ann. Math. (2) 131, 493–540 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelius Greither.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greither, C., Kurihara, M. Stickelberger elements, Fitting ideals of class groups of CM-fields, and dualisation. Math. Z. 260, 905–930 (2008). https://doi.org/10.1007/s00209-008-0306-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-008-0306-9

Keywords

Navigation