Skip to main content
Log in

A stationary Fleming–Viot type Brownian particle system

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We consider a system \({\{X_1,\ldots,X_N\}}\) of N particles in a bounded d-dimensional domain D. During periods in which none of the particles \({X_1,\ldots,X_N}\) hit the boundary \({\partial D}\) , the system behaves like N independent d-dimensional Brownian motions. When one of the particles hits the boundary \({\partial D}\) , then it instantaneously jumps to the site of one of the remaining N − 1 particles with probability (N − 1)−1. For the system \({\{X_1,\ldots,X_N\}}\) , the existence of an invariant measure \({\nu\mskip-12mu \nu}\) has been demonstrated in Burdzy et al. [Comm Math Phys 214(3):679–703, 2000]. We provide a structural formula for this invariant measure \({\nu\mskip-12mu \nu}\) in terms of the invariant measure m of the Markov chain \({\xi}\) which returns the sites the process \({X:=(X_1,\ldots,X_N)}\) jumps to after hitting the boundary \({\partial D^N}\) . In addition, we characterize the asymptotic behavior of the invariant measure m of \({\xi}\) when N → ∞. Using the methods of the paper, we provide a rigorous proof of the fact that the stationary empirical measure processes \({\frac1N\sum_{i=1}^N\delta_{X_i}}\) converge weakly as N → ∞ to a deterministic constant motion. This motion is concentrated on the probability measure whose density with respect to the Lebesgue measure is the first eigenfunction of the Dirichlet Laplacian on D. This result can be regarded as a complement to a previous one in Grigorescu and Kang [Stoch Process Appl 110(1):111–143, 2004].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben-Ari I., Pinsky R.: Spectral analysis of a family of second-order elliptic operators with nonlocal boundary condition indexed by a probability measure. J. Funct. Anal. 251(1), 122–140 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ben-Ari, I., Pinsky, R.: Ergodic behavior of diffusions with random jumps from the boundary. Stoch. Process. Appl. (2006, to appear)

  3. Bogdan K.: Sharp estimates for the Green function in Lipschitz domains. J. Math. Anal. Appl. 243, 326–337 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Burdzy K., Hołyst R., Ingerman D., March P.: Configurational transition in a Fleming–Viot type model and probabilistic interpretation of Laplacian eigenfunctions. J. Phys. A 29, 2633–2642 (1996)

    Article  MATH  Google Scholar 

  5. Burdzy K., Hołyst R., March P.: A Fleming–Viot particle representation of the Dirichlet Laplacian. Comm. Math. Phys. 214(3), 679–703 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bolthausen E., Van den Berg M.: Estimates for Dirichlet eigenfunctions. J. Lond. Math. Soc. 59(2), 607–619 (1999)

    Article  MATH  Google Scholar 

  7. Chung K.L., Zhao Z.: From Brownian motion to Schrödinger’s equation. Springer, Berlin (1995)

    MATH  Google Scholar 

  8. Davies E.B.: Properties of the Green’s function of some Schrödinger operators. J. Lond. Math. Soc. 7, 483–491 (1973)

    Article  Google Scholar 

  9. Dawson, D.A.: Measure-valued Markov processes. In: Dawson, D.A., Maisonneuve, B., Spencer, J. (eds.) Ecole d´ Eté Probailités de Saint-Flour XXI. LNM, vol. 1541, pp. 1–260. Springer, Berlin (1991)

  10. Dynkin E.B.: Markov Processes, vol. I, II. Springer, Berlin (1965)

    MATH  Google Scholar 

  11. Ethier S.N., Kurtz T.: Markov Processes, Characterization and Convergence. Wiley, New York (1986)

    MATH  Google Scholar 

  12. Grigorescu I., Kang M.: Hydrodynamic limit for a Fleming–Viot type system. Stoch. Process. Appl. 110(1), 111–143 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Grigorescu I., Kang M.: Tagged particle limit for a Fleming–Viot type system. Electron. J. Probab. 11, 311–331 (2006)

    MathSciNet  Google Scholar 

  14. Hirsch F., Lacombe G.: Elements of Functional Analysis. Springer, Berlin (1997)

    MATH  Google Scholar 

  15. Kallenberg O.: Foundations of Modern Probability, 2nd edn. Springer, Berlin (2002)

    MATH  Google Scholar 

  16. Löbus, J.-U.: Weak convergence of n-particle systems using bilinear forms, preprint. http://www.minet.uni-jena.de/~loebus/Mc.pdf (2006)

  17. Miranda C.: Partial Differential Equations of Elliptic Type, 2nd edn. Springer, Berlin (1970)

    MATH  Google Scholar 

  18. Stoyan D., Kendall W.S., Mecke J.: Stochastic Geometry and its Applications, 2nd edn. Wiley, Chichester (1995)

    MATH  Google Scholar 

  19. Van den Berg M.: On the spectral counting function for the Dirichlet Laplacian. J. Funct. Anal. 107(2), 352–361 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  20. Yosida K.: Functional Analysis. Springer, Berlin (1980)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg-Uwe Löbus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Löbus, JU. A stationary Fleming–Viot type Brownian particle system. Math. Z. 263, 541–581 (2009). https://doi.org/10.1007/s00209-008-0430-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-008-0430-6

Keywords

Mathematics Subject Classification (2000)

Navigation