Skip to main content
Log in

Centers of F-purity

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper, we study a positive characteristic analogue of the centers of log canonicity of a pair (R, Δ). We call these analogues centers of F-purity. We prove positive characteristic analogues of subadjunction-like results, prove new stronger subadjunction-like results, and in some cases, lift these new results to characteristic zero. Using a generalization of centers of F-purity which we call uniformly F-compatible ideals, we give a characterization of the test ideal (which unifies several previous characterizations). Finally, in the case that Δ = 0, we show that uniformly F-compatible ideals coincide with the annihilators of the \({\mathcal{F}(E_R(k))}\) -submodules of E R (k) as defined by Lyubeznik and Smith.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aberbach I.M., Enescu F.: The structure of F-pure rings. Math. Z. 250(4), 791–806 (2005) (MR2180375)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ambro, F.: The locus of log canonical singularities. available at arXiv:math.AG/9806067 (1998, preprint)

  3. Blickle M., Mustaţă M., Smith K.: Discreteness and rationality of F-thresholds, Michigan Math. J. 57, 43–61 (2008) (Dedicated to Mel Hochster on the occasion of his 65th birthday)

    MATH  Google Scholar 

  4. Brion, M., Kumar, S.: Frobenius splitting methods in geometry and representation theory. In: Progress in Mathematics, vol. 231. Birkhäuser Boston Inc., Boston (2005) [MR2107324 (2005k:14104)]

  5. De Fernex, T., Hacon, C.: Singularities on normal varieties. Compositio Math. (2008, to appear) arXiv:0805.1767

  6. Enescu F., Hochster M.: The Frobenius structure of local cohomology. Algebra Number Theory 2(7), 721–754 (2008) (MR2460693)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fedder R.: F-purity and rational singularity. Trans. Am. Math. Soc. 278(2), 461–480 (1983) [MR701505 (84h:13031)]

    Article  MATH  MathSciNet  Google Scholar 

  8. Greco S., Traverso C.: On seminormal schemes. Compos. Math. 40(3), 325–365 (1980) [MR571055 (81j:14030)]

    MATH  MathSciNet  Google Scholar 

  9. Hara N.: Geometric interpretation of tight closure and test ideals. Trans. Am. Math. Soc. 353(5), 1885–1906 (2001) (electronic) [MR1813597 (2001m:13009)]

    Article  MATH  MathSciNet  Google Scholar 

  10. Hara N.: A characteristic p analog of multiplier ideals and applications. Comm. Algebra 33(10), 3375–3388 (2005) [MR2175438 (2006f:13006)]

    Article  MATH  MathSciNet  Google Scholar 

  11. Hara N., Takagi S.: On a generalization of test ideals. Nagoya Math. J. 175, 59–74 (2004) [MR2085311 (2005g:13009)]

    MATH  MathSciNet  Google Scholar 

  12. Hara N., Watanabe K.-I.: F-regular and F-pure rings versus log terminal and log canonical singularities. J. Algebraic Geom. 11(2), 363–392 (2002) [MR1874118 (2002k:13009)]

    MATH  MathSciNet  Google Scholar 

  13. Hara N., Yoshida K.-I.: A generalization of tight closure and multiplier ideals, Trans. Am. Math. Soc. 355(8), 3143–3174 (2003) (electronic) [MR1974679 (2004i:13003)]

    Article  MATH  MathSciNet  Google Scholar 

  14. Hartshorne, R.: Generalized divisors on Gorenstein schemes. In: Proceedings of Conference on Algebraic Geometry and Ring Theory in honor of Michael Artin, Part III (Antwerp, 1992), vol. 8, pp. 287–339 (1994) [MR1291023 (95k:14008)]

  15. Hironaka H.: Resolution of singularities of an algebraic variety over a field of characteristic zero. I. Ann. Math. (2) 79, 109–203 (1964) [MR0199184 (33 #7333)]

    Article  MathSciNet  Google Scholar 

  16. Hironaka H.: Resolution of singularities of an algebraic variety over a field of characteristic zero. II. Ann. Math. (2) 79, 205–326 (1964) [MR0199184 (33 #7333)]

    Article  MathSciNet  Google Scholar 

  17. Hochster, M.: Foundations of tight closure theory, lecture notes from a course taught on the University of Michigan Fall 2007. Available online at http://www.math.lsa.umich.edu/~hochster/711F07/711.html

  18. Hochster M., Huneke C.: Tight closure, invariant theory, and the Briançon-Skoda theorem. J. Am. Math. Soc. 3(1), 31–116 (1990) [MR1017784 (91g:13010)]

    Article  MATH  MathSciNet  Google Scholar 

  19. Hochster M., Huneke C.: F-regularity, test elements, and smooth base change. Trans. Am. Math. Soc. 346(1), 1–62 (1994) [MR1273534 (95d:13007)]

    Article  MATH  MathSciNet  Google Scholar 

  20. Hochster, M., Huneke, C.: Tight closure in equal characteristic zero (2006, preprint)

  21. Hochster M., Roberts J.L.: The purity of the Frobenius and local cohomology. Advances Math. 21(2), 117–172 (1976) [MR0417172 (54 #5230)]

    Article  MATH  MathSciNet  Google Scholar 

  22. Huneke, C., Swanson, I.: Integral closure of ideals, rings, and modules. London Mathematical Society Lecture Note Series, vol.336. Cambridge University Press, Cambridge (2006) [MR2266432]

  23. Kawamata Y.: Subadjunction of log canonical divisors. II. Am. J. Math. 120(5), 893–899 (1998) [MR1646046 (2000d:14020)]

    Article  MATH  MathSciNet  Google Scholar 

  24. Kollár J., Shepherd-Barron N.I.: Threefolds and deformations of surface singularities. Invent. Math. 91(2), 299–338 (1988) [MR922803 (88m:14022)]

    Article  MATH  MathSciNet  Google Scholar 

  25. Kollár, J.: Singularities of pairs, Algebraic geometry—Santa Cruz 1995. In: Proc. Sympos. Pure Math., vol. 62, pp. 221–287. Amer. Math. Soc., Providence (1997) [MR1492525 (99m:14033)]

  26. Kollár, J., 14 coauthors: Flips and abundance for algebraic threefolds. Société Mathématique de France, Paris (1992) [Papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake City, Utah, August 1991, Astérisque No. 211 (1992). MR1225842 (94f:14013)]

  27. Kollár, J., Mori, S.: Birational geometry of algebraic varieties. Cambridge Tracts in Mathematics, vol. 134. Cambridge University Press, Cambridge (1998) [With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original. MR1658959 (2000b:14018)]

  28. Kovács, S., Schwede, K., Smith, K.: Cohen-Macaulay semi-log canonical singularities are Du Bois arXiv:0801.1541

  29. Lauritzen N., Raben-Pedersen U., Thomsen J.F.: Global F-regularity of Schubert varieties with applications to \({\fancyscript {D}}\)-modules. J. Am. Math. Soc. 19(2), 345–355 (2006) (electronic) [MR2188129 (2006h:14005)]

    Article  MATH  MathSciNet  Google Scholar 

  30. Lazarsfeld, R.: Positivity in algebraic geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 49. Springer, Berlin (2004) [Positivity for vector bundles, and multiplier ideals. MR2095472 (2005k:14001b)]

  31. Lyubeznik G., Smith K.E.: On the commutation of the test ideal with localization and completion, Trans. Am. Math. Soc. 353(8), 3149–3180 (2001) (electronic) [MR1828602 (2002f:13010)]

    Article  MATH  MathSciNet  Google Scholar 

  32. Mehta V.B., Ramanathan A.: Frobenius splitting and cohomology vanishing for Schubert varieties. Ann. Math. (2) 122(1), 27–40 (1985) [MR799251 (86k:14038)]

    Article  MathSciNet  Google Scholar 

  33. Schwede K.: Generalized test ideals, sharp F-purity, and sharp test elements. Math. Res. Lett. 15(6), 1251–1261 (2008) (MR2470398)

    MATH  MathSciNet  Google Scholar 

  34. Schwede K.E.: F-injective singularities are Du Bois. Am. J. Math. 131(2), 445–473 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  35. Sharp R.Y.: Graded annihilators of modules over the Frobenius skew polynomial ring, and tight closure. Trans. Am. Math. Soc. 359(9), 4237–4258 (2007) (electronic) [MR2309183 (2008b:13006)]

    Article  MATH  MathSciNet  Google Scholar 

  36. Smith K.E.: The D-module structure of F-split rings. Math. Res. Lett. 2(4), 377–386 (1995) [MR1355702 (96j:13024)]

    MATH  MathSciNet  Google Scholar 

  37. Smith K.E.: F-rational rings have rational singularities. Am. J. Math. 119(1), 159–180 (1997) [MR1428062 (97k:13004)]

    Article  MATH  Google Scholar 

  38. Smith K.E.: The multiplier ideal is a universal test ideal. Comm. Algebra 28(12), 5915–5929 (2000) [Special issue in honor of Robin Hartshorne. MR1808611 (2002d:13008)]

    Article  MATH  MathSciNet  Google Scholar 

  39. Takagi S.: F-singularities of pairs and inversion of adjunction of arbitrary codimension. Invent. Math. 157(1), 123–146 (2004) (MR2135186)

    Article  MATH  MathSciNet  Google Scholar 

  40. Takagi S.: An interpretation of multiplier ideals via tight closure. J. Algebraic Geom. 13(2), 393–415 (2004) [MR2047704 (2005c:13002)]

    MATH  MathSciNet  Google Scholar 

  41. Takagi S.: Formulas for multiplier ideals on singular varieties. Am. J. Math. 128(6), 1345–1362 (2006) [MR2275023 (2007i:14006)]

    Article  MATH  MathSciNet  Google Scholar 

  42. Takagi S.: A characteristic p analogue of plt singularities and adjoint ideals. Math. Z. 259(2), 321–341 (2008) [MR2390084 (2009b:13004)]

    Article  MATH  MathSciNet  Google Scholar 

  43. Traverso C.: Seminormality and Picard group. Ann. Scuola Norm. Sup. Pisa 24(3), 585–595 (1970) [MR0277542 (43 #3275)]

    MATH  MathSciNet  Google Scholar 

  44. Vassilev J.C.: Test ideals in quotients of F-finite regular local rings. Trans. Am. Math. Soc. 350(10), 4041–4051 (1998) [MR1458336 (98m:13009)]

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Schwede.

Additional information

K. Schwede was partially supported by a National Science Foundation postdoctoral fellowship and by RTG grant number 0502170.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwede, K. Centers of F-purity. Math. Z. 265, 687–714 (2010). https://doi.org/10.1007/s00209-009-0536-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-009-0536-5

Keywords

Mathematics Subject Classification (2000)

Navigation