Skip to main content
Log in

Periodic geodesics and geometry of compact Lorentzian manifolds with a Killing vector field

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We study the geometry and the periodic geodesics of a compact Lorentzian manifold that has a Killing vector field which is timelike somewhere. Using a compactness argument for subgroups of the isometry group, we prove the existence of one timelike non self-intersecting periodic geodesic. If the Killing vector field is nowhere vanishing, then there are at least two distinct periodic geodesics; as a special case, compact stationary manifolds have at least two periodic timelike geodesics. We also discuss some properties of the topology of such manifolds. In particular, we show that a compact manifold M admits a Lorentzian metric with a nowhere vanishing Killing vector field which is timelike somewhere if and only if M admits a smooth circle action without fixed points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, S., Stuck, G.: The isometry group of a compact Lorentz manifold. I, II. Invent. Math. 129(2), 239–261, 263–287 (1997)

    Google Scholar 

  2. Baker A.: Matrix Groups. An Introduction to Lie Group Theory. Springer Undergraduate Mathematics Series. Springer, London (2002)

    Google Scholar 

  3. Beem J.K., Ehrlich P.E., Easley K.: Global Lorentzian Geometry. Marcel Dekker, New York (1996)

    MATH  Google Scholar 

  4. Beem J.K., Ehrlich P.E., Markvorsen S.: Timelike isometries and Killing fields. Geom. Dedic. 26, 247–258 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  5. Biliotti L., Mercuri F., Piccione P.: On a Gromoll–Meyer type theorem in globally hyperbolic stationary spacetimes. Comm. Anal. Geom. 16(2), 333–393 (2008)

    MATH  MathSciNet  Google Scholar 

  6. Bredon G.: Introduction to Compact Transformation Groups. Pure and Applied Mathematics, vol. 46. Academic Press, New York (1972)

    Google Scholar 

  7. Cannas da Silva A.: Lectures on Symplectic Geometry. Lecture Notes in Mathematics, vol. 1764. Springer, Berlin (2001)

    Book  Google Scholar 

  8. Caponio E., Masiello A., Piccione P.: Some global properties of static spacetimes. Math. Z. 244(3), 457–468 (2003)

    MATH  MathSciNet  Google Scholar 

  9. D’Ambra G.: Isometry groups of Lorentz manifolds. Invent. Math. 92, 555–565 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fintushel R.: Circle actions on simply connected 4-manifolds. Trans. Am. Math. Soc. 230, 147–171 (1977)

    MATH  MathSciNet  Google Scholar 

  11. Fintushel R.: Classification of circle actions on 4-manifolds. Trans. Am. Math. Soc. 242, 377–390 (1978)

    MATH  MathSciNet  Google Scholar 

  12. Galloway G.: Closed timelike geodesics. Trans. Am. Math. Soc. 285, 379–384 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  13. Galloway G.: Compact Lorentzian manifolds without closed non spacelike geodesics. Proc. Am. Math. Soc. 98, 119–123 (1986)

    MATH  MathSciNet  Google Scholar 

  14. Giannoni F., Piccione P., Sampalmieri R.: On the geodesical connectedness for a class of semi- Riemannian manifolds. J. Math. Anal. Appl. 252(1), 444–476 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Guediri M.: On the existence of closed timelike geodesics in compact spacetimes. Math. Z. 239, 277–291 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Guediri M.: On the existence of closed timelike geodesics in compact spacetimes. II. Math. Z. 244, 577–585 (2003)

    MATH  MathSciNet  Google Scholar 

  17. Guediri M.: On the nonexistence of closed timelike geodesics in flat Lorentz 2-step nilmanifolds. Trans. Am. Math. Soc. 355, 775–786 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Guediri M.: A new class of compact spacetimes without closed causal geodesics. Geom. Dedic. 126, 177–185 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Guediri M.: Closed timelike geodesics in compact spacetimes. Trans. Am. Math. Soc. 359(6), 2663–2673 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Knapp A.W.: Lie Groups Beyond an Introduction. Progress in Mathematics, vol. 140. Birkhõuser, Boston (1996)

    Google Scholar 

  21. Kobayashi S., Nomizu K.: Foundations of Differential Geometry, vol. I. Wiley Classics Library. A Wiley-Interscience Publication. Wiley, New York (1996)

    Google Scholar 

  22. Kobayashi, S.: Transformation Groups in Differential geometry, Reprint of the 1972 edition. Classics in Mathematics. Springer, Berlin (1995)

  23. Kollár J.: Circle actions on simply connected 5-manifolds. Topology 45, 643–671 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Marzantowicz W.: A G-Lusternik–Schnirelman category of space with an action of a compact Lie group. Topology 28, 403–412 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  25. Masiello A.: On the existence of a closed geodesic in stationary Lorentzian manifolds. J. Differ. Equ. 104, 48–59 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  26. Molino P.: Riemannian Foliations. Progress in Mathematics, vol. 73. Birkhõuser, Boston (1988)

    Google Scholar 

  27. O’Neill B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, New York (1983)

    MATH  Google Scholar 

  28. Piccione, P., Zeghib, A.: On the isometry group of a compact stationary Lorentzian manifold. Preprint (2009)

  29. Romero A., Sánchez M.: Completeness of compact Lorentz manifolds admitting a timelike conformal Killing vector field. Proc. Am. Math. Soc. 123(9), 2831–2833 (1995)

    MATH  Google Scholar 

  30. Sachs R., Wu H.: General Relativity for Mathematicians. Graduate Texts in Mathematics, vol. 48. Springer, New York (1977)

    Google Scholar 

  31. Sánchez M.: Structure of Lorentzian tori with a Killing vector field. Trans. Am. Math. Soc. 349(3), 1063–1080 (1997)

    Article  MATH  Google Scholar 

  32. Sánchez, M.: Lorentzian manifolds admitting a Killing vector field. In: Proceedings of the Second World Congress of Nonlinear Analysts, Part 1 (Athens, 1996). Nonlinear Anal. 30 (1), 643–654 (1997)

  33. Sánchez M.: On causality and closed geodesics of compact Lorentzian manifolds and static spacetimes. Differ. Geom. Appl. 24(1), 21–32 (2006)

    Article  MATH  Google Scholar 

  34. Scott P.: The geometries of 3-manifolds. Bull. Lond. Math. Soc. 15(5), 401–487 (1983)

    Article  MATH  Google Scholar 

  35. Seifert H.: Topologie dreidimensionaler gefaserte Räume. Acta Math. 60, 148–238 (1932)

    MathSciNet  Google Scholar 

  36. Tipler F.J.: Existence of closed timelike geodesics in Lorentz spaces. Proc. Am. Math. Soc. 76, 145–147 (1979)

    MATH  MathSciNet  Google Scholar 

  37. Zeghib, A.: Sur les espaces-temps homogènes, The Epstein Birthday Schrift, pp. 551–576 (electronic). Geom. Topol. Monogr., 1, Geom. Topol. Publ. Coventry (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Flores.

Additional information

The authors are grateful to Andrea Spiro for giving several interesting suggestions on isometric group actions on manifolds. J. L. Flores thanks the Departamento de Matemática, Universidade de São Paulo, where this work started, for its kind hospitality during his stay there. He is partially supported by Spanish MEC-FEDER Grant MTM2007-60731 and Regional J. Andalucía Grant P06-FQM-01951. M. Á. Javaloyes was partially supported by Regional J. Andalucía Grant P06-FQM-01951 and by Spanish MEC Grant MTM2007-64504. P. Piccione is sponsored by Capes, Brasil, Grant BEX 1509-08-0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flores, J.L., Javaloyes, M.Á. & Piccione, P. Periodic geodesics and geometry of compact Lorentzian manifolds with a Killing vector field. Math. Z. 267, 221–233 (2011). https://doi.org/10.1007/s00209-009-0617-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-009-0617-5

Mathematics Subject Classification (2000)

Navigation