Skip to main content
Log in

Averaging techniques yield reliable a posteriori finite element error control for obstacle problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary.

The reliability of frequently applied averaging techniques for a posteriori error control has recently been established for a series of finite element methods in the context of second-order partial differential equations. This paper establishes related reliable and efficient a posteriori error estimates for the energy-norm error of an obstacle problem on unstructured grids as a model example for variational inequalities. The surprising main result asserts that the distance of the piecewise constant discrete gradient to any continuous piecewise affine approximation is a reliable upper error bound up to known higher order terms, consistency terms, and a multiplicative constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ainsworth, M., Oden, J.T.: A posteriori error estimation in finite element analysis. John Wiley & Sons, xx+240, 2000

  2. Alberty, J.: Carsten Carstensen and Stefan A. Funken. Remarks around 50 lines of Matlab: short finite element implementation. Numer Algorithms 20(2–3), 117–137 (1999)

    Google Scholar 

  3. Babuška, I., Strouboulis, T.: The finite element method and its reliability. Oxford University Press, xii+802, 2001

  4. Bartels, S., Carstensen, C.: Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: higher order FEM. Math. Comp. 71(239), 971–994 (2002)

    MATH  Google Scholar 

  5. Bartels, S.: Carsten Carstensen and Georg Dolzmann. Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis. Numer. Math. (in press). Preprint available at http://www.numerik.uni-kiel.de/reports/2002/02-1.html

  6. Blum, H., Suttmeier, F-T.: Weighted error estimates for finite element solutions of variational inequalities. Computing 65(2), 119–134 (2000)

    Article  MATH  Google Scholar 

  7. Brenner, S.C., L. Ridgway Scott. The mathematical theory of finite element methods. Springer Verlag, New York, 15, xii+294, 1994

  8. Carstensen, C.: Quasi interpolation and a posteriori error analysis in finite element method. M2AN Math. Model. Numer. Anal. 33(6), 1187–1202 (1999)

  9. Carstensen, C.: All first-order averaging techniques for a posteriori finite element error control on unstructured grids are efficient and reliable. Math. Comp. 73(247), 1153–1165 (2004)

    Article  MATH  Google Scholar 

  10. Carstensen, C., Alberty, J.: Averaging techniques for reliable a posteriori FE-error control in elastoplasticity with hardening. Comput. Methods Appl. Mech. Engrg. 192(11–12), 1435–1450 (2003)

    Google Scholar 

  11. Carstensen, C., Bartels, S.: Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. I. Low order conforming, nonconforming and Mixed FEM. Math. Comp. 71(239), 945–969 (2002)

    Google Scholar 

  12. Carstensen, C., Funken, S.A.: Constants in Clement-interpolation error and residual based a posteriori estimates in finite element methods. East-West J. Numer. Math. 8(3), 153–175 (2000)

    MATH  Google Scholar 

  13. Carstensen, C., Funken, S.A.: Averaging technique for FE a posteriori error control in elasticity. Part I: conforming FEM. Comp. Meth. Appl. Engrg. 190, 2483–2498 (2001); II. λ-independend estimates. Comput. Methods Appl. Mech. Engrg. 190(35–36), 4663–4675 (2001); III. Locking-free nonconforming FEM. Comput. Methods Appl. Mech. Engrg. 191(8-10), 861–877 (2001)

    Article  MATH  Google Scholar 

  14. Carstensen, C., Funken, S.A.: A posteriori error control in low-order finite element discretisations of incompressible stationary flow problems. Math. Comp. 70(236), 1353–1381 (2001)

    Article  MATH  Google Scholar 

  15. Carstensen, C., Verfürth, R.: Edge residuals dominate a posteriori error estimates for low order finite element methods. SIAM J. Numer. Anal. 36(5), 1571–1587 (1999)

    Article  MATH  Google Scholar 

  16. Chen, Z., Nochetto, R.H.: Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math. 84(4), 527–548 (2000)

    Article  MATH  Google Scholar 

  17. Ciarlet, P.G.: The finite element method for elliptic problems. North-Holland Publishing Co. Amsterdam, xix+530, 1978

  18. Clément, P.: Approximation by finite element functions using local regularization. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. 9(R-2), 77–84 (1975)

  19. Elliott, C.M.: On the finite element approximation of an elliptic variational inequality arising from an implicit time discretization of the Stefan problem. IMA J. Numer. Anal. 1(1), 115–125 (1981)

    MATH  Google Scholar 

  20. Eriksson, K., Estep, D.J., Hansbo, P., Johnson, C.: Introduction to adaptive methods for differential equations. Acta Numerica, 1995, Cambridge Univ. Press, Cambridge, 1995, pp. 105–158

  21. Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. CRC Press, Boca Raton, FL, viii+268, 1992

  22. Falk, R.S.: Error estimates for the approximation of a class of variational inequalities. Math. Comput. 28, 963–971 (1974)

    MATH  Google Scholar 

  23. Glowinski, R., Lions, J-L., Tremolieres, R.: Numerical analysis of variational inequalities. (Studies in Mathematics and its Applications) North-Holland Publishing Co. Amsterdam, 8, 1981

  24. Kornhuber, R., Adaptive monotone multigrid methods for nonlinear variational problems. (Advances in Numerical Mathematics) B.G.Teubner, Stuttgart, 158, 1997

  25. Li, R., Liu, W., Tang, T.: Moving Mesh Finite Element Approximations for Variational Inequality I: Static Obstacle Problems. Preprint 277 of Department of Mathematics, Hong Kong Baptist University, 2000

  26. Natterer, F.: Optimale L2-Konvergenz finiter Elemente bei Variationsungleichungen. Bonner Math. Schr. 89, 1–12 (1976)

    Google Scholar 

  27. Nochetto, R.H., Wahlbin, L.B.: Positivity preserving finite element interpolation. Math. Comput. 71(240), 1405–1419 (2002)

    Article  MATH  Google Scholar 

  28. Rodrigues, J.F.: Obstacle problems in mathematical physics. North Holland Publishing Co. Amsterdam, xvi+352, 1987

  29. Veeser, A.: On a posteriori error estimation for constant obstacle problems. (Numerical methods for viscosity solutions and applications (Heraklion, 1999)), Ser. Adv. Math. Appl. Sci. World Sci. Publishing, 59, 221–234 (2001)

  30. Veeser, A.: Efficient and reliable a posteriori error estimators for elliptic obstacle problems. SIAM J. Numer. Anal. 39(1), 146–167 (2001)

    Article  MATH  Google Scholar 

  31. Verfürth, R.: A review of a posteriori error estimation and adaptive mesh- refinement techniques. Wiley-Teubner, 1996

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Carstensen.

Additional information

Mathematics Subject Classification (2000): 35J20, 49J40, 65N30

Acknowledgement The first author (S.B.) thankfully acknowledges partial support by the German Research Foundation (DFG) within the Graduiertenkolleg ‘Effiziente Algorithmen und Mehrskalenmethoden’. The authors thank one anonymous referee for the suggestion of an projected SOR algorithm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartels, S., Carstensen, C. Averaging techniques yield reliable a posteriori finite element error control for obstacle problems. Numer. Math. 99, 225–249 (2004). https://doi.org/10.1007/s00211-004-0553-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-004-0553-6

Keywords

Navigation