Skip to main content
Log in

Sparse grid spaces for the numerical solution of the electronic Schrödinger equation

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This article complements the author’s recent work [Numer. Math. 98, 731–759 (2004)] on the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives. It has been shown there that the solutions of this equation are surprisingly smooth and possess square integrable mixed weak derivatives of order up to N+1 with N the number of electrons across the singularities of the interaction potentials, and it has been claimed that this result can help to break the complexity barriers in computational quantum mechanics using correspondingly antisymmetrized sparse grid trial functions. A construction of this kind that can be interpreted as a sparse grid sampling theorem is sketched here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S.: Lectures on the Exponential Decay of Solutions of Second-Order Elliptic Operators. Princeton: Princeton University Press, 1981

  2. Atkins, P.W., Friedman, R.S.: Molecular Quantum Mechanics. Oxford: Oxford University Press, 1997

  3. Babenko, K.I.: Approximation by trigonometric polynomials in a certain class of periodic functions of several variables. Soviet Math. Dokl. 1, 672–675 (1960)

    Google Scholar 

  4. Bungartz, H.J., Griebel, M.: Sparse Grids. Acta Numerica 2004, pp. 1–123

  5. Flad, H.J., Hackbusch, W., Kolb, D., Schneider, R.: Wavelet approximation of correlated wave functions. I. Basics. Journ. Chem. Phys. 116, 9641–9657 (2002)

    Article  Google Scholar 

  6. Fournais, S., Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Østergard Sørensen, T.: Sharp regularity estimates for Coulombic many-electron wave functions. Commun. Math. Phys. 255, 183–227 (2005)

    Article  MathSciNet  Google Scholar 

  7. Gårding, L.: On the essential spectrum of Schrödinger operators. J. Funct. Anal. 52, 1–10 (1983)

    Article  Google Scholar 

  8. Garcke, J., Griebel, M.: On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric fields with the sparse grid combination technique. J. Comput. Phys. 165, 694–716 (2000)

    Article  MathSciNet  Google Scholar 

  9. Hackbusch, W.: The efficient computation of certain determinants arising in the treatment of Schrödinger’s equation. Computing 67, 35–56 (2000)

    Article  Google Scholar 

  10. Helgaker, T., Jørgensen, P., Olsen, J.: Molecular electronic structure theory. New York: John Wiley and Sons, 2001

  11. Hunziker, W., Sigal, I.M.: The quantum N-body problem. J. Math. Phys. 41, 3448–3510 (2000)

    Article  Google Scholar 

  12. Luo, H., Kolb, D., Flad, H.J, Hackbusch, W., Koprucki, T.: Wavelet approximation of correlated wave functions. II. Hyperbolic wavelets and adaptive approximation schemes. J. Chem. Phys. 117, 3625–3638 (2002)

    Google Scholar 

  13. Kato, T.: On the eigenfunctions of many-particle systems in quantum mechanics. Commun. Pure and Appl. Math. 10, 151–177 (1957)

    Google Scholar 

  14. Le Bris, C. (Ed.): Handbook of Numerical Analysis, Vol. X: Computational Chemistry. Amsterdam: North Holland, 2003

  15. Messiah, A.: Quantum Mechanics. New York: Dover Publications, 2000

  16. Reed, M., Simon, B.: Methods of Modern Mathematical Physics IV: Analysis of Operators. San Diego: Academic Press, 1978

  17. Shannon, C.E.: A mathematical theory of communication. Bell Sys. Tech. J. 27, 379–423, 623–656 (1948)

    Google Scholar 

  18. Shannon, C.E.: Communication in the presence of noise. Proc. IRE 37, 10–21 (1949)

    Google Scholar 

  19. Simon, B.: Schrödinger operators in the twentieth century. J. Math. Phys. 41, 3523–3555 (2000)

    Article  Google Scholar 

  20. Smolyak, S.A.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk SSSR 4, 240–243 (1963)

    Google Scholar 

  21. Whittaker, J.M.: On the functions which are represented by the expansions of the interpolation theory. Proc. Roy. Soc. Edinburgh 35, 181–194 (1915)

    Google Scholar 

  22. Whittaker, J.M.: Interpolation Function Theory. Cambridge: Cambridge University Press, 1935

  23. Yserentant, H.: On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives. Numer. Math. 98, 731–759 (2004)

    Article  MathSciNet  Google Scholar 

  24. Yserentant, H.: On the electronic Schrödinger equation. Lecture Notes, Universität Tübingen 2003; accessible via the author’s homepage

  25. Zenger, C.: Sparse grids. In: W. Hackbusch (ed.) Parallel Algorithms for Partial Differential Equations. Proceedings, Kiel 1990, pp. 241–251. Notes on Numerical Fluid Mechanics vol. 31, Braunschweig Wiesbaden: Vieweg, 1991

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Yserentant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yserentant, H. Sparse grid spaces for the numerical solution of the electronic Schrödinger equation. Numer. Math. 101, 381–389 (2005). https://doi.org/10.1007/s00211-005-0581-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-005-0581-x

Mathematics Subject Classification (1991)

Navigation