Skip to main content
Log in

A time-stepping scheme for inelastic collisions

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We propose here a numerical scheme to compute the motion of rigid bodies with a non-elastic impact law. The method is based on a global computation of the reaction forces between bodies. Those forces, whose direction is known since we neglect friction effects, are identified at the discrete level with a scalar which plays the role of a Kuhn-Tucker multiplier associated to a first-order approximation of the non-overlapping constraint, expressed in terms of velocities. Since our original motivation is the handling of the non-overlapping constraint in fluid-particle direct simulations, we paid a special attention to stability and robustness. The scheme is proved to be stable and robust. As regards its asymptotic behaviour, a convergence result is established in the case of a single contact. Some numerical tests are presented to illustrate the properties of the algorithm. Firstly, we investigate its asymptotic behaviour in a situation of non-uniqueness, for a single particle. The two other sets of results show the good behaviour of the scheme for large time steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ballard, P.: The dynamics of discrete mechanical systems with perfect unilateral constraints. Arch. Rational Mech. Anal. 154, 199–274 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bertoluzza, S., Ismail, M., Maury, B.: The fbm method: Semi-discrete scheme and some numerical experiments. Springer-Verlag, 2004

  3. Bourbaki, N.: Topological vector spaces. Chapters 1–5. In: Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1987, Translated from the French by H. G. Eggleston and S. Madan

  4. Brenier, Y., Grenier, E.: Sticky particles and scalar conservation laws. SIAM J. Numer. Anal. 35(6), 2317–2328 (1998) (electronic)

    Article  MathSciNet  Google Scholar 

  5. Ciarlet, P.G.: Introduction à l'analyse numérique matricielle et à l'optimisation. Masson, Paris, 1990

  6. Coddington, E.A., Levinson, N.: Theory of ordinary differential equations. McGraw-Hill Education, Europe, 1984

  7. Colombo, G., Monteiro Marques, M.D.P.: Sweeping by a continuous prox-regular set. J. Differential Equations 187(1), 46–62 (2003)

    Article  MathSciNet  Google Scholar 

  8. Frémond, M.: Non-smooth thermomechanics. Springer-Verlag, Berlin, 2002

  9. Glowinski, R.: Finite element methods for incompressible viscous flow. Handb. Numer. Anal. IX, North-Holland, Amsterdam, 2003

  10. Glowinski, R., Pan, T.W.: Direct simulation of the motion of neutrally buoyant circular cylinders in plane Poiseuille flow. J. Comput. Phys. 181(1), 260–279 (2002)

    MathSciNet  Google Scholar 

  11. Haraux, A.: Nonlinear evolution equations – global behaviour of solutions. Springer-Verlag, Berlin Haidelberg New York, 1981

  12. Hu, H.H.: Direct simulation of flows of solid-liquid mixtures. Int. J. of Multiphase Flow 22(2), 335–352 (1996)

    Article  Google Scholar 

  13. Johnson, A.A., Tezduyar, T.E.: Simulation of multiple spheres falling in a liquid-filled tube. Comput. Methods Appl. Mech. Engrg. 134(3–4), 351–373 (1996)

    Google Scholar 

  14. Kim, S., Karrila, S.J.: Microhydrodynamics: principles and selected applications. Butterworth-Heinemann, Boston, 1991

  15. Maury, B.: A many-body lubrication model. C. R. Acad. Sci. Paris Sér. I Math. 325(9), 1053–1058 (1997)

    MathSciNet  Google Scholar 

  16. Maury, B.: Direct simulations of 2D fluid-particle flows in biperiodic domains. J. Comput. Phys. 156(2), 325–351 (1999)

    Article  MathSciNet  Google Scholar 

  17. Maury, B.: Analyse fonctionnelle, exercices et problèmes corrigés. Ellipses, Paris, 2004

  18. Moreau, J.J.: Décomposition orthogonale d'un espace Hilbertien selon deux cônes mutuellement polaires. C. R. Acad. Sci. Série I 255, 199–274 (1962)

    Google Scholar 

  19. Moreau, J.J.: Some numerical methods in multibody dynamics: Application to granular materials. Eur. J. Mech. A/Solids 13, 93–114 (1994)

    MATH  MathSciNet  Google Scholar 

  20. Schatzman, M.: A class of nonlinear differential equations of second order in time. Nonlinear Analysis, Theory, Methods & Applications 2, 355–373 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sigurgeirssons, H., Stuart, A., Wan, W.-L.: Algorithms for particle-field simulations with collisions. J. Comput. Phys. 172, 766–807 (2001)

    Article  Google Scholar 

  22. Stewart, D.E.: Convergence of a time-stepping scheme for rigid-body dynamics and resolution of Painlevé's problem. Arch. Rational Mech. Anal. 145, 215–260 (1998)

    Article  MATH  Google Scholar 

  23. Stewart, D.E.: Rigid-body dynamics with friction and impact. SIAM Review 42(1), 3–39 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Maury.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maury, B. A time-stepping scheme for inelastic collisions. Numer. Math. 102, 649–679 (2006). https://doi.org/10.1007/s00211-005-0666-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-005-0666-6

Keywords

Navigation