Skip to main content
Log in

A finite volume scheme for the Patlak–Keller–Segel chemotaxis model

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

A finite volume method is presented to discretize the Patlak–Keller–Segel (PKS) modeling chemosensitive movements. First, we prove existence and uniqueness of a numerical solution to the proposed scheme. Then, we give a priori estimates and establish a threshold on the initial mass, for which we show that the numerical approximation converges to the solution to the PKS system when the initial mass is lower than this threshold. Numerical simulations are performed to verify accuracy and the properties of the scheme. Finally, in the last section we investigate blow-up of the solution for large mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brenner M.P., Levitov L., Budrene E.O. (1995) Physical mechanisms for chemotactic pattern formation by bacteria. Biophy‘s’. J. 74,1677–1693

    Article  Google Scholar 

  2. Brezis H. (1987) Analyse Fonctionelle: Théorie et Applications. Masson, Paris

    Google Scholar 

  3. Chainais-Hillairet C., Liu J.-G., Peng Y.-J. (2003) Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis. M2AN Math. Model Numer. Anal. 37, 319–338

    Article  MATH  MathSciNet  Google Scholar 

  4. Childress S., Percus J.K. (1981) Nonlinear aspects of chemotaxis. Math. Biosci; 56, 217–237

    Article  MATH  MathSciNet  Google Scholar 

  5. Coudière Y., Gallouët Th., Herbin R. (2001) Discrete Sobolev inequalities and L p error estimates for finite volume solutions of convection diffusion equations. M2AN Math. Model Numer. Anal. 35, 767–778

    Google Scholar 

  6. DeVore R., Sharpley R.: Maximal functions easuring smoothness. Mem. Amer. Math. Soc. 293, viii + 115 (1984)

  7. Eymard, R., Gallouet, Th., Herbin, R.: Finite volume methods.In: Handbook of Numerical Analysis, vol. VII, North-Holland, Amsterdam

  8. Eymard R., Gallouet Th., Herbin R., Michel A. (2002) Convergence of a finite volume scheme for nonlinear degenerate parabolic equations. Numer. Math. 92, 41–82

    Article  MATH  MathSciNet  Google Scholar 

  9. Filbet F., Laurençcot Ph., Perthame B. (2005) Derivation of hyperbolic models for chemosensitive movement. J. Math Biol. 50, 189–207

    Article  MATH  MathSciNet  Google Scholar 

  10. Filbet F., Shu C.-W. (2005) Approximation of hyperbolic models for chemosensitive movement. SIAM J. Sci. Comput. 27(3): 850–872

    Article  MATH  MathSciNet  Google Scholar 

  11. Gajewski H., Zacharias K. (1998) Global behavior of a reaction diffusion system modelling chemotaxis. Math. Nachr. 195, 77–114

    MATH  MathSciNet  Google Scholar 

  12. Herrero M.A., Medina E., Velázquez J.J.L. (1997) Finite-time aggregation into a single point in a reaction-diffusion system. Nonlinearity 10, 1739–1754

    Article  MATH  MathSciNet  Google Scholar 

  13. Herrero M.A., Velazquez J.L.L. (1997) A blow up mechanism for a chemotaxis model. Ann. Scuola Normale Superiore 24, 633–683

    MATH  MathSciNet  Google Scholar 

  14. Horstmann D. (2003) From 1970 until now: The Keller–Segel model in chemotaxis and its consequences I. Jahresber. DMV 105, 103–165

    MATH  MathSciNet  Google Scholar 

  15. Horstmann D. (2004) From 1970 until now: The Keller-Segel model in chemotaxis and its consequences II. Jahresber. DMV 106, 51–69

    MATH  MathSciNet  Google Scholar 

  16. Tyson R., Stern L.J., LeVeque R.J. (2000) Fractional step methods applied to a chemotaxis model. J. Math. Biol. 41, 455–475

    Article  MATH  MathSciNet  Google Scholar 

  17. Keller E.F., Segel L.A.(1971) Traveling band of chemotactic bacteria: a theoritical analysis. J. Theor. Biol. 30, 235–248

    Article  Google Scholar 

  18. Maini P.K. (2001) Application of mathematical modelling to biological pattern formation. Coherent structures in complex systems. Lecture Notes in Physics, vol 567. Springer, Berlin Heidelberg New York

    Google Scholar 

  19. Marrocco A. (2003) 2D simulation of chemotaxis bacteria aggregation. ESAIM:M2AN 37(4): 617–630

    Article  MathSciNet  Google Scholar 

  20. Murray J.D. (2003) Mathematical Biology, 3rd edn. vol. 2. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  21. Nanjundiah V. (1973) Chemotaxis, signal relaying and aggregation morphology. J. Theor. Biol. 42, 63–105

    Article  Google Scholar 

  22. Patlak C.S. (1953) Random walk with persistense and external bias. Bull. Math. Biol. Biophys. 15, 311–338

    Article  MathSciNet  Google Scholar 

  23. Perthame B.(2004) PDE models for chemotactic movements: parabolic, hyperbolic and kinetic. Appl. Math 49, 539–564

    Article  MathSciNet  MATH  Google Scholar 

  24. Simon J. (1987) Compact sets in the space L p(0,TB). Ann. Math. Appl. 146, 65–96

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Filbet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filbet, F. A finite volume scheme for the Patlak–Keller–Segel chemotaxis model. Numer. Math. 104, 457–488 (2006). https://doi.org/10.1007/s00211-006-0024-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-006-0024-3

AMS Subject Classification(s)

Navigation