Skip to main content
Log in

A stable recurrence for the incomplete gamma function with imaginary second argument

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Even though the two term recurrence relation satisfied by the incomplete gamma function is asymptotically stable in at least one direction, for an imaginary second argument there can be a considerable loss of correct digits before stability sets in. We present an approach to compute the recurrence relation to full precision, also for small values of the arguments, when the first argument is negative and the second one is purely imaginary. A detailed analysis shows that this approach works well for all values considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abramowitz M., Stegun I.A. (1964) Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables, vol. 55 of Applied Mathematics Series. National Bureau of Standards, Washington

    Google Scholar 

  2. Berry M.V. (1989) Uniform asymptotic smoothing of Stokes’ discontinuities. Proc. R. Soc. Lond. A 422, 7–21

    MATH  MathSciNet  Google Scholar 

  3. Chirikjian G.S. (1996) Fredholm integral equations on the Euclidean motion group. Inverse Probl. 12, 579–599

    Article  MATH  MathSciNet  Google Scholar 

  4. Conway J.T. (2000) Analytical solutions for the newtonian gravitational field induced by matter within axisymmetric boundaries. Mon. Not. R. Astron. Soc. 316, 540–554

    Article  Google Scholar 

  5. Davis A.M.J. (1992) Drag modifications for a sphere in a rotational motion at small non-zero Reynolds and Taylor numbers: wake interference and possible coriolis effects. J. Fluid Mech. 237, 13–22

    Article  MATH  MathSciNet  Google Scholar 

  6. Davis S. (2001) Scalar field theory and the definition of momentum in curved space. Class. Quant. Grav. 18, 3395–3425

    Article  MATH  Google Scholar 

  7. Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G. (1953) Higher Transcendental Functions, volume II of California Institute of Technology, Bateman Manuscript Project. McGraw-Hill Book Company, Inc., New York

    Google Scholar 

  8. Gaspard R., Alonso Ramirez D. (1992) Ruelle classical resonances and dynamical chaos: the three- and four-disk scatterers. Phys. Rev. A 45(12): 8383–8397

    Article  MathSciNet  Google Scholar 

  9. Gautschi, W.: The computation of special functions by linear difference equations. In: Elaydi, S., Győri, I., Ladas, G. (eds.) Proceedings of the Second International Conference on Difference Equations, pp. 213–243. Gordon and Breach Science Publishers, New York (1995)

  10. Groote S., Körner J.G., Pivovarov A.A. (1999) On the evaluation of sunset-type Feynman diagrams. Nucl. Phys. B 542, 515–547

    Article  MATH  Google Scholar 

  11. Holmes M.J., Kashyap R., Wyatt R. (1999) Physical properties of optical fiber sidetap grating filters: free space model. IEEE J. Sel. Topics in Quant. Electron. 5(5): 1353–1365

    Article  Google Scholar 

  12. Lotter T., Benien C., Vary P. (2003) Multichannel direction-independent speech enhancement using spectral amplitude estimation. EURASIP J. Appl. Signal Process. 11, 1147–1156

    Article  MATH  Google Scholar 

  13. Miller, G.F.: Tables of generalized exponential integrals, vol. 3 of Mathematical Tables. National Physics Laboratory, Her Majesty’s Stationary Office, London (1960)

  14. Olver F.W.J. (1991) Uniform, exponentially improved, asymptotic expansions for the generalized exponential integral. SIAM J. Math. Anal. 22, 1460–1474

    Article  MATH  MathSciNet  Google Scholar 

  15. Olver, F.W.J.: The generalized exponential integral. In: Zahar, R.V.M. (eds.) Approximation and Computation: A Festschrift in Honor of Walter Gautschi, vol. 119 of Internat. Ser. Num. Math. pp. 497–510. Birkhaüser (1994)

  16. Paris R.B. (1994) An asymptotic representation for the Riemann zeta function on the critical line. Proc. R. Soc. Lond. A 446, 565–587

    MATH  MathSciNet  Google Scholar 

  17. Roesset J.M. (1998) Nondestructive dynamic testing of soils and pavements. Tamkang J. Sci. Eng. 1(2): 61–81

    Google Scholar 

  18. Stone H.A. McConnell H.M. (1995) Hydrodynamics of quantized shape transitions of lipid domains. R. Soc. Lond. Proc. Ser. A 448, 97–111

    Article  Google Scholar 

  19. Tanzosh J., Stone H.A. (1994) Motion of a rigid particle in a rotating viscous flow: an integral equation approach. J. Fluid Mech. 275, 225–256

    Article  MATH  MathSciNet  Google Scholar 

  20. Temme N.M. (1975) Uniform asymptotic expansions of the incomplete gamma functions and the incomplete beta function. Math. Comp. 29(132): 1109–1114

    Article  MATH  MathSciNet  Google Scholar 

  21. Temme N.M. (1979) The asymptotic expansion of the incomplete gamma functions. SIAM J. Math. Anal. 10(4): 757–766

    Article  MATH  MathSciNet  Google Scholar 

  22. Temme N.M. (1996) Uniform asymptotics for the incomplete gamma functions starting from negative values of the parameters. Methods Appl. Anal. 3(3): 335–344

    MATH  MathSciNet  Google Scholar 

  23. Van Deun J., Cools R. (2005) Integrating products of Bessel functions using the incomplete Gamma function. In: Simos T.E., Psihoyios G., Tsitouras Ch. (eds) International Conference on Numerical Analysis and Applied Mathematics 2005. Wiley–VCH, New York, pp. 668–671

    Google Scholar 

  24. Van Deun, J., Cools, R.: Algorithm 8XX: Computing infinite range integrals of an arbitrary product of Bessel functions. ACM Trans. Math. Softw. (To appear)

  25. Van Deun J., Cools R. A Matlab implementation of an algorithm for computing integrals of products of Bessel functions. In: Takayama N., Iglesias A., Gutierrez J., (eds) Proceedings of ICMS 2006, vol. 4151 of Lecture Notes in Computer Science, pp. 289–300

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald Cools.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Deun, J., Cools, R. A stable recurrence for the incomplete gamma function with imaginary second argument. Numer. Math. 104, 445–456 (2006). https://doi.org/10.1007/s00211-006-0026-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-006-0026-1

Mathematics Subject Classification (2000)

Navigation