Skip to main content
Log in

A hybrid numerical-asymptotic boundary integral method for high-frequency acoustic scattering

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We propose a new robust method for the computation of scattering of high-frequency acoustic plane waves by smooth convex objects in 2D. We formulate this problem by the direct boundary integral method, using the classical combined potential approach. By exploiting the known asymptotics of the solution, we devise particular expansions, valid in various zones of the boundary, which express the solution of the integral equation as a product of explicit oscillatory functions and more slowly varying unknown amplitudes. The amplitudes are approximated by polynomials (of minimum degree d) in each zone using a Galerkin scheme. We prove that the underlying bilinear form is continuous in L 2, with a continuity constant that grows mildly in the wavenumber k. We also show that the bilinear form is uniformly L 2-coercive, independent of k, for all k sufficiently large. (The latter result depends on rather delicate Fourier analysis and is restricted in 2D to circular domains, but it also applies to spheres in higher dimensions.) Using these results and the asymptotic expansion of the solution, we prove superalgebraic convergence of our numerical method as d → ∞ for fixed k. We also prove that, as k → ∞, d has to increase only very modestly to maintain a fixed error bound (dk 1/9 is a typical behaviour). Numerical experiments show that the method suffers minimal loss of accuracy as k →∞, for a fixed number of degrees of freedom. Numerical solutions with a relative error of about 10−5 are obtained on domains of size \(\mathcal{O}(1)\) for k up to 800 using about 60 degrees of freedom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abboud, T., Nédélec, J.-C., Zhou B.: Méthode des équations intégrales pour les hautes fréquencies. C.R. Acad. Sci. Paris 318 Série I, 165–170 (1994)

  2. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)

  3. Amini S. (1990). On the choice of the coupling parameter in boundary integral formulations of the exterior acoustics problem. Appl. Anal. 35: 75–92

    MATH  MathSciNet  Google Scholar 

  4. Arden, S., Chandler-Wilde, S.N., Langdon, S.: A collocation method for high frequency scattering by convex polygons. Reading University Numerical Analysis Report 7/05, Reading, UK. J. Comp. Appl. Math. (to appear)

  5. Babich, V.M., Buldyrev, V.S.: Short-wavelength Diffraction Theory. Springer, Berlin (1991)

  6. Babich V.M., Dement’ev D.B., Samokish B.A. and Smyshlyaev V.P. (2000). On evaluation of the diffraction coefficients for arbitrary “nonsingular” directions of a smooth convex cone. SIAM J. Appl. Math. 60: 536–573

    Article  MATH  MathSciNet  Google Scholar 

  7. Babich, V.M., Kirpichnikova, N.Y.: The Boundary-Layer Method in Diffraction Problems. Springer, Berlin (1979)

  8. Bonner B.D., Graham I.G. and Smyshlyaev V.P. (2005). The computation of conical diffraction coefficients in high-frequency acoustic wave scattering. SIAM J. Numer. Anal. 43: 1202–1230

    Article  MATH  MathSciNet  Google Scholar 

  9. Bonner, B.D.: Calculating conical diffraction coefficients. PhD thesis, University of Bath, UK (2003)

  10. Brakhage H., Werner and P. (1965). Über das Dirichletsche Aussenraumproblem für die Helmholtzsche Schwingungsgleichung. Arch. der Math. 16: 325–329

    Article  MATH  MathSciNet  Google Scholar 

  11. Bruno O.P., Geuzaine C.A., Monro J.A., Reitich and F. (2004). Prescribed error tolerances within fixed computational times for scattering problems of arbitrarily high frequency: the convex case. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 362: 629–645

    Article  MATH  MathSciNet  Google Scholar 

  12. Bruno, O.P., Geuzaine, C.A., Reitich, F.: On the \(\mathcal{O}(1)\) solution of multiple-scattering problems. IEEE Trans. Magn. 41, 1488–1491 (2005)

    Google Scholar 

  13. Buffa, A., Sauter, S.A.: Stabilisation of the acoustic single layer potential on non-smooth domains. SIAM J. Sci. Comput. 28, 1974–1999 (2006)

    Google Scholar 

  14. Burton, A.J., Miller, G.F.: The application of integral methods for the numerical solution of boundary value problems. Proc. R. Soc. Lond. Ser. A 232, 201–210 (1971)

    Google Scholar 

  15. Buslaev, V.S.: Short-wave asymptotic behaviour in the problem of diffraction by smooth convex contours(in Russian). Trudy Mat. Inst. Steklov. 73 14–117 (1964). Abbreviated English translation: On the shortwave asymptotic limit in the problem of diffraction by convex bodies. Sov. Phys. Dokl. 7, 685–687 (1963)

    Google Scholar 

  16. Buslaev, V.S.: Formulas for the short-wave asymptotic behavior in the diffraction problem by convex bodies. (in Russian) Vestnik Leningrad. University 17 (13), 5–21 (1962)

  17. Buslaev, V.S.: The asymptotic behavior of the spectral characteristics of exterior problems for the Schrödinger operator (in Russian). Izv. Akad. Nauk SSSR Ser. Mat. 39, 149–235 (1975); English translation: Math. USSR–Izv. 9 139–223 (1975)

  18. Chazarain J. (1973). Construction de la paramétrix du problème mixte hyperbolique pour l’equation des ondes. C. R. Acad. Sci. Paris 276: 1213–1215

    MATH  MathSciNet  Google Scholar 

  19. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering. Springer, New York (1998)

  20. Ecevit, F.: Integral equation formulations of electromagnetic and acoustic scattering problems: convergence of multiple scattering iterations and high-frequency asymptotic expansions. PhD thesis, University of Minnesota, (2005)

  21. Filippov V.B. (1976). Rigorous justification of the shortwave asymptotic theory of diffraction in the shadow zone. J. Sov. Math. 6: 577–626

    Article  MATH  Google Scholar 

  22. Fock, V.A.: Electromagnetic Diffraction and Propagation Problems. Pergamon Press, New York (1965)

  23. Ganesh M. and Graham I.G. (2004). A high-order algorithm for obstacle scattering in three dimensions. J. Comput. Phys. 198: 211–242

    Article  MATH  MathSciNet  Google Scholar 

  24. Ganesh, M., Langdon, S., Sloan, I.H.: Efficient evaluation of highly oscillatory acoustic scattering surface integrals. Reading University Numerical Analysis Report 6/05, Reading, UK (2005)

  25. Giebermann, K.: Schnelle Summationsverfahren zur numerischen Lösung von Integralgleichungen für Streuprobleme im \(\mathbb{R}^3\). PhD thesis, University of Karlsruhe (1997)

  26. Giladi, E., Keller, J.B.: An asymptotically derived boundary element method for the Helmholtz equation. In 20th Annual Review of Progress in Applied Computational Electromagnetics, Syracuse, New York (2004)

  27. Hörmander, L.: The Analysis of Linear Differential Operators. I, Distribution Theory and Fourier Analysis. Springer, Berlin (1983)

  28. Kress R. (1985). Minimizing the condition number of boundary integral operators in acoustic and electromagnetic scattering. Q. J. Mech. Appl. Math. 38: 323–341

    Article  MATH  MathSciNet  Google Scholar 

  29. Kress R. and Spassov W.T. (1983). On the condition number of boundary integral operators for the exterior Dirichlet problem for the Helmholtz equation. Numer. Math. 42: 77–85

    Article  MATH  MathSciNet  Google Scholar 

  30. Landau L.J. (2000). Bessel functions: monotonicity and bounds. J. Lond. Math. Soc. 61: 197–215

    Article  MATH  Google Scholar 

  31. Langdon, S., Chandler-Wilde, S.N.: A wavenumber independent boundary element method for an acoustic scattering problem. Isaac Newton Institute for Mathematical Sciences Preprint NI03049-1090 CPD, 2003, SIAM J. Numer. Anal. 43, 2450–2477 (2006)

  32. Langdon, S., Chandler-Wilde, S. N.: Implementation of a boundary element method for high frequency scattering by convex polygons. In: Chen, K. (ed.) Proceedings of 5th UK Conference on Boundary Integral Methods, Liverpool, pp. 2–11. University of Liverpool (2005)

  33. Lebeau G. (1984). Régularité Gevrey 3 pour la diffraction. Comm. Partial Differ. Equ. 9: 1437–1494

    MATH  MathSciNet  Google Scholar 

  34. Hargé T. and Lebeau G. (1994). Diffraction par un convexe. Invent. Math. 118: 161–196

    Article  MATH  MathSciNet  Google Scholar 

  35. Ludwig D. (1967). Uniform asymptotic expansion of the field scattered by a convex onject at high frequencies. Comm. Pure Appl. Math. 20: 103–138

    Article  MATH  MathSciNet  Google Scholar 

  36. Morawetz C.S. and Ludwig D. (1968). An inequality for the reduced wave equation and the justification of geometrical optics. Comm. Pure Appl. Math. 21: 187–203

    Article  MATH  MathSciNet  Google Scholar 

  37. Melrose R.B. and Taylor M.E. (1985). Near peak scattering and the corrected Kirchhoff approximation for a convex obstacle. Adv. Math. 55: 242–315

    Article  MATH  MathSciNet  Google Scholar 

  38. Nédélec, J.-C.: Acoustic and Electromagnetic Equations. Springer, New York (2001)

  39. Popov G. (1987). Some estimates of Green’s functions in the shadow. Osaka J. Math. 24: 1–12

    MATH  MathSciNet  Google Scholar 

  40. Schwab, C.:p- and hp- Finite Element Methods. Theory and Applications in Solid and Fluid Mechanics. Oxford University Press, Oxford (1998)

  41. Ursell F. (1968). Creeping modes in a shadow. Proc. Camb. Philos. Soc. 68: 171–191

    Article  MathSciNet  Google Scholar 

  42. Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1995)

  43. Zayaev A.B. and Filippov V.P. (1985). Rigorous justification of the asymptotic solutions of “sliding-wave” type. J. Sov. Math. 30: 2395–2406

    Article  MATH  Google Scholar 

  44. Zayaev A.B. and Filippov V.P. (1986). Rigorous justification of the Friedlander-Keller formulas. J. Sov. Math. 32: 134–143

    Article  MATH  Google Scholar 

  45. Zworski M. (1990). High frequency scatering by a convex obstacle. Duke Math. J. 61: 545–634

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Domínguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domínguez, V., Graham, I.G. & Smyshlyaev, V.P. A hybrid numerical-asymptotic boundary integral method for high-frequency acoustic scattering. Numer. Math. 106, 471–510 (2007). https://doi.org/10.1007/s00211-007-0071-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-007-0071-4

Mathematics Subject Classification (2000)

Navigation