Skip to main content
Log in

On the discrepancy principle for some Newton type methods for solving nonlinear inverse problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We consider the computation of stable approximations to the exact solution \({x^\dagger}\) of nonlinear ill-posed inverse problems F(x) = y with nonlinear operators F : XY between two Hilbert spaces X and Y by the Newton type methods

$$x_{k+1}^{\delta}=x_{0}-g_{\alpha_{k}}\left(F'(x_{k}^{\delta})^*F'(x_{k}^{\delta})\right) F'(x_{k}^{\delta})^*\left(F(x_{k}^{\delta})-y^{\delta}-F'(x_{k}^{\delta})(x_{k}^{\delta}-x_{0})\right)$$

in the case that only available data is a noise \({y^\delta}\) of y satisfying \({\|y^\delta - y\| \le \delta}\) with a given small noise level \({\delta > 0}\) . We terminate the iteration by the discrepancy principle in which the stopping index \({k_\delta}\) is determined as the first integer such that

$$\|F(x_{k_\delta}^{\delta})-y^{\delta}\|\le \tau \delta < \|F(x_{k}^{\delta})-y^{\delta}\|, \quad 0\le k < k_{\delta}$$

with a given number τ > 1. Under certain conditions on {α k }, {g α } and F, we prove that \({x_{k_\delta}^{\delta}}\) converges to \({x^\dagger}\) as \({\delta \rightarrow 0}\) and establish various order optimal convergence rate results. It is remarkable that we even can show the order optimality under merely the Lipschitz condition on the Fréchet derivative F′ of F if \({x_{0} - x^\dagger}\) is smooth enough.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakushinskii A.B. (1992). The problems of the convergence of the iteratively regularized Gauss–Newton method. Comput. Math. Math. Phys. 32: 1353–1359

    MathSciNet  Google Scholar 

  2. Bauer F. and Hohage T. (2005). A Lepskij-type stopping rule for regularized Newton methods. Inverse Probl. 21: 1975–1991

    Article  MATH  MathSciNet  Google Scholar 

  3. Blaschke B., Neubauer A. and Scherzer O. (1997). On convergence rates for the iteratively regularized Gauss–Newton method. IMA J. Numer. Anal. 17: 421–436

    Article  MATH  MathSciNet  Google Scholar 

  4. Deuflhard P., Engl H.W. and Scherzer O. (1998). A convergence analysis of iterative methods for the solution of nonlinear ill-posed problems under affinely invariant conditions. Inverse Probl. 14(5): 1081–1106

    Article  MATH  MathSciNet  Google Scholar 

  5. Hanke M. (1997). A regularizing Levenberg–Marquardt scheme with applications to inverse groundwater filtration problems. Inverse Probl. 13: 79–95

    Article  MATH  MathSciNet  Google Scholar 

  6. Hanke M. (1997). Regularizing properties of a truncated Newton–CG algorithm for nonlinear inverse problems. Numer. Funct. Anal. Optim. 18: 971–993

    Article  MATH  MathSciNet  Google Scholar 

  7. Hanke M., Neubauer A. and Scherzer O. (1995). A convergence analysis of Landweber iteration of nonlinear ill-posed problems. Numer. Math. 72: 21–37

    Article  MATH  MathSciNet  Google Scholar 

  8. Hohage T. (1997). Logarithmic convergence rates of the iteratively regularized Gauss–Newton method for an inverse potential and an inverse scattering problem. Inverse Probl. 13(5): 1279–1299

    Article  MATH  MathSciNet  Google Scholar 

  9. Jin Q.N. (2000). On the iteratively regularized Gauss–Newton method for solving nonlinear ill-posed problems. Math. Comp. 69(232): 1603–1623

    Article  MATH  MathSciNet  Google Scholar 

  10. Jin, Q.N.: A convergence analysis of the iteratively regularized Gauss–Newton method under the Lipschitz condition, Inverse Probl. 24(4), article 045002 (2008)

    Google Scholar 

  11. Jin Q.N. and Hou Z.Y. (1999). On an a posteriori parameter choice strategy for Tikhonov regularization of nonlinear ill-posed problems. Numer. Math. 83(1): 139–159

    Article  MATH  MathSciNet  Google Scholar 

  12. Kaltenbacher B. (1997). Some Newton-type methods for the regularization of nonlinear illposed problems. Inverse Probl. 13: 729–753

    Article  MATH  MathSciNet  Google Scholar 

  13. Kaltenbacher B. (1998). A posteriori choice strategies for some Newton type methods for the regularization of nonlinear ill-posed problems. Numer. Math. 79: 501–528

    Article  MATH  MathSciNet  Google Scholar 

  14. Kaltenbacher, B., Neubauer, A., Scherzer, O.: Iterative Regularization Methods for Nonlinear Ill-Posed Problems, de Gruyter, Berlin (2008)

  15. Rieder A. (1999). On the regularization of nonlinear ill-posed problems via inexact Newton iterations. Inverse Probl. 15: 309–327

    Article  MATH  MathSciNet  Google Scholar 

  16. Rieder A. (2001). On convergence rates of inexact Newton regularizations. Numer. Math. 88: 347–365

    Article  MATH  MathSciNet  Google Scholar 

  17. Scherzer O., Engl H.W. and Kunisch K. (1993). Optimal a posteriori parameter choice for Tikhonov regularization for solving nonlinear ill-posed problems. SIAM J. Numer. Anal. 30: 1796–1838

    Article  MATH  MathSciNet  Google Scholar 

  18. Tautenhahn U. (1997). On a general regularization scheme for nonlinear ill-posed problems. Inverse Probl. 13(5): 1427–1437

    Article  MATH  MathSciNet  Google Scholar 

  19. Tautenhahn U. and Jin Q.N. (2003). Tikhonov regularization and a posteriori rules for solving nonlinear ill posed problems. Inverse Probl. 19(1): 1–21

    Article  MATH  MathSciNet  Google Scholar 

  20. Vainikko, G.M., Veretennikov, A.Y.: Iteration Procedures in Ill-Posed Problems, Moscow, Nauka, 1986 (in Russian)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinian Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, Q., Tautenhahn, U. On the discrepancy principle for some Newton type methods for solving nonlinear inverse problems. Numer. Math. 111, 509–558 (2009). https://doi.org/10.1007/s00211-008-0198-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-008-0198-y

Mathematics Subject Classification (2000)

Navigation