Skip to main content
Log in

Hölder estimates for Green’s functions on convex polyhedral domains and their applications to finite element methods

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

A model second-order elliptic equation on a general convex polyhedral domain in three dimensions is considered. The aim of this paper is twofold: First sharp Hölder estimates for the corresponding Green’s function are obtained. As an applications of these estimates to finite element methods, we show the best approximation property of the error in \({W^1_{\infty}}\) . In contrast to previously known results, \({W_p^{2}}\) regularity for p > 3, which does not hold for general convex polyhedral domains, is not required. Furthermore, the new Green’s function estimates allow us to obtain localized error estimates at a point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asadzadeh, M., Schatz, A.H., Wendland, W.: Asymptotic Error Expansions for the Finite Element Method for Second Order Elliptic Problems in \({\mathbb{R}^N}\) , N ≥ 2. I: Local Interior Expansions. Math. Comp. (2009, in press)

  2. Asadzadeh, M., Schatz, A.H., Wendland, W.: A Non-Standard Approach to Richardson Extrapolation in the Finite Element Method for Second Order Elliptic Problems, preprint, Chalmers University of Technology, Göteborg University

  3. Brenner, S., Scott, R.: Mathematical Theory of Finite Element Methods, 3rd edn. Texts in Applied Mathematics, vol. 15. Springer, New York (2008)

  4. Carey, V.: A Posteriori Error Estimation via Recovered Gradients. Dissertation, Cornell University (2005)

  5. Chen Z., Chen H.: Pointwise error estimates of discontinuous Galerkin methods with penalty for second-order elliptic problems. SIAM J. Numer. Anal. 42, 1146–1166 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Demlow A.: Localized pointwise a posteriori error estimates for gradients of piecewise linear finite element approximations to second-order quasilinear elliptic problems. SIAM J. Numer. Anal. 44(2), 494–514 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Demlow, A.: Weighted Residual Estimators for a Posteriori Estimation of Pointwise Gradient Errors in Quasilinear Elliptic Problems, preprint

  8. Demlow A.: Sharply localized pointwise and \({W_\infty^{-1}}\) estimates for finite element methods for quasilinear problems. Math. Comp. 76, 1725–1741 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Douglas J. Jr, Dupont T.: A Galerkin methods for a nonlinear Dirichlet problem. Math. Comp. 29, 689–696 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dupont T., Scott R.: Polynomial approximation of functions in Sobolev spaces. Math. Comp. 34, 441–463 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  11. Frehse J., Rannacher R.: Asymptotic L -error estimates for linear finite element approximations of quasilinear boundary value problems. SIAM J. Numer. Anal. 15(2), 418–431 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fromm S.: Potential space estimates for Green potentials in convex domains. Proc. Amer. Math. Soc. 119(1), 225–233 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  13. Girault V., Nochetto R.H., Scott R.: Maximum-norm stability of the finite element Stokes projection. J. Math. Pures Appl. 84(9), 279–330 (2005)

    MATH  MathSciNet  Google Scholar 

  14. Guzmán J.: Pointwise error estimates for discontinuous Galerkin methods with lifting operators for elliptic problems. Math. Comp. 75, 1067–1085 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Grüter M., Widman K.-O.: The Green function for uniformly elliptic equations. Manuscr. Math. 37, 303–342 (1982)

    Article  MATH  Google Scholar 

  16. Hoffmann W., Schatz A.H., Wahlbin L.B., Wittum G.: Asymptotically exact a posteriori estimators for the pointwise gradient error on each element in irregular meshes. Part 1: a smooth problem and globally quasi-uniform meshes. Math. Comp. 70, 897–909 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kozlov V.A., Maz’ya V.G., Rossmann J.: Spectral Problems Assosoated with Corner Singularities of Solutions to Elliptic Equations, Mathematical Surveys and Monographs, vol. 85. Amer. Math. Soc., Providence (2001)

    Google Scholar 

  18. Krasovskii, J.P.: Properties of Green’s Function and Generalized Solutions of Elliptic Boundary Value Problems, Soviet Mathematics (Translations of Doklady Academy of Sciences of the USSR), 102, pp. 54–120 (1969)

  19. Maz’ya V.G., Roßmann J.: On the Agmon-Miranda maximum principle for solutions of elliptic equations in polyhedral and polygonal domains. Ann. Glob. Anal. Geom. 9(3), 253–303 (1991)

    Article  MATH  Google Scholar 

  20. Maz’ya V.G., Roßmann J.: Point estimates for Green’s matrix to boundary value problems for second order systems in a polyhedral cone. Z. Angew. Math. Mech. 82(5), 291–316 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Maz’ya V.G., Roßmann J.: Weighted L p estimates of solutions to boundary value problems for second order elliptic systems in polyhedral domains. Z. Angew. Math. Mech. 83(7), 435–467 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Maz’ya V.G., Roßmann J.: Schauder estimates for solutions to a mixed boundary value problem for the Stokes system in polyhedral domains. Math. Methods Appl. Sci. 29, 965–1017 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Natterer F.: Uber die punktweise Konvergenz finiter Elemente. Numer. Math. 25, 67–77 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  24. Nitsche, J.A.: L convergence of finite element approximations. In: Proceedings Second Conference on Finite Elements, Rennes, France (1975)

  25. Nitsche, J.A.: L Convergence of Finite Element Approximations, Mathematical Aspects of Finite Element Methods. Lecture Notes in Math., vol. 606, pp. 261–274. Springer, Berlin (1977)

  26. Nitsche J.A., Schatz A.H.: Interior estimates for Ritz-Galerkin methods. Math. Comp. 28, 937–958 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  27. Rannacher R.: Zur L -Konvergenz linearer finiter Elemente beim Dirichlet-Problem. Math. Zeitschrift 149, 69–77 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  28. Rannacher R., Scott R.: Some optimal error estimates for piecewise linear finite element approximations. Math. Comp. 158, 437–445 (1982)

    Article  MathSciNet  Google Scholar 

  29. Saavedra P., Scott R.: Variational formulation of a model free-boundary problem. Math. Comp. 57, 451–475 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  30. Schatz A.H.: A weak discrete maximum principle and stability of the finite element method in L on the plane polygonal domains. I. Math. Comp. 34, 77–91 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  31. Schatz A.H.: Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids: Part 1. Math. Comp. 67, 877–899 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  32. Schatz A.H.: Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids. II. Interior estimates. SIAM J. Numer. Anal. 38(4), 1269–1293 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  33. Schatz A.H.: Perturbations of forms and error estimates for the finite element method at a point, with an application to improved superconvergence error estimates for subspaces that are symmetric with respect to a point. SIAM J. Numer. Anal. 42(6), 2342–2365 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  34. Schatz A.H., Wahlbin L.B.: Interior maximum norm estimates for finite element methods. Math. Comp. 31, 414–442 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  35. Schatz A.H., Wahlbin L.B.: On the quasi-optimality in L of the \({\overset\circ{H^1}}\) -projection into finite element spaces. Math. Comp. 38, 1–22 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  36. Schatz A.H., Wahlbin L.B.: Interior maximum norm estimates for finite element methods II. Math. Comp. 64, 907–928 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  37. Scholz R.: A mixed method for 4th order problems using linear finite elements. RAIRO Anal. Numer. 12(1), 85–90 (1978)

    MATH  MathSciNet  Google Scholar 

  38. Scott L.R.: Optimal L estimates for the finite element method. Math. Comp. 30, 681–697 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  39. Wahlbin L.B.: Local behavior in finite element methods, Handbook of Numerical Analysis, vol, II. In: Ciarlet, P.G., Lions, J.L. (eds) Finite Element Methods (Part 1), pp. 355–522. Elsevier, Amsterdam (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Leykekhman.

Additional information

J. Guzmán was supported by NSF grand DMS-0503050, D. Leykekhman was supported in part by NSF grands DMS-0240058 and DMS-0811167, and A. H. Schatz by NSF grand DMS-0612599.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guzmán, J., Leykekhman, D., Rossmann, J. et al. Hölder estimates for Green’s functions on convex polyhedral domains and their applications to finite element methods. Numer. Math. 112, 221–243 (2009). https://doi.org/10.1007/s00211-009-0213-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-009-0213-y

Mathematics Subject Classification (2000)

Navigation