Skip to main content
Log in

Convergence analysis of the high-order mimetic finite difference method

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We prove second-order convergence of the conservative variable and its flux in the high-order MFD method. The convergence results are proved for unstructured polyhedral meshes and full tensor diffusion coefficients. For the case of non-constant coefficients, we also develop a new family of high-order MFD methods. Theoretical result are confirmed through numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon S.: Lectures on Elliptic Boundary Value Problems. Van Nostrand, New York (1965)

    MATH  Google Scholar 

  2. Arnold D.N., Brezzi F., Cockburn B., Marini L.D.: Unified analysis of discontinuous galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beirão da Veiga, L.: A mimetic finite difference method for linear elasticity (submitted)

  4. Beirão da Veiga L.: A residual based error estimator for the mimetic finite difference method. Numer. Math. 108(3), 387–406 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Beirão da Veiga, L., Lipnikov, K., Manzini, G.: Convergence analysis of the high-order mimetic finite difference method. Technical Report 14PV08/13/0, IMATI-CNR, via Ferrata, 1, 27100 Pavia, Italy (2008)

  6. Beirão da Veiga L., Manzini G.: An a posteriori error estimator for the mimetic finite difference approximation of elliptic problems. Int. J. Numer. Meth. Eng. 76(11), 1696–1723 (2008)

    Article  Google Scholar 

  7. Beirão da Veiga L., Manzini G.: A higher-order formulation of the mimetic finite difference method. SIAM J. Sci. Comput. 31(1), 732–760 (2008)

    Article  MathSciNet  Google Scholar 

  8. Bertolazzi E., Manzini G.: Algorithm 817 P2MESH: generic object-oriented interface between 2-D unstructured meshes and FEM/FVM-based PDE solvers. ACM Trans. Math. Softw. 28(1), 101–132 (2002)

    Article  MATH  Google Scholar 

  9. Brenner S., Scott L.: The Mathematical Theory of Finite Element Methods. Springer, Berlin/Heidelberg (1994)

    MATH  Google Scholar 

  10. Brezzi F., Buffa A., Lipnikov K.: Mimetic finite differences for elliptic problems. Math. Mod. Numer. Anal. 43, 277–295 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Brezzi F., Lipnikov K., Shashkov M.: Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43(5), 1872–1896 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Brezzi F., Lipnikov K., Shashkov M.: Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes with curved faces. Math. Models Methods Appl. Sci. 16(2), 275–297 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Brezzi F., Lipnikov K., Shashkov M., Simoncini V.: A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comput. Methods Appl. Mech. Eng. 196, 3682–3692 (2007)

    Article  MathSciNet  Google Scholar 

  14. Brezzi F., Lipnikov K., Simoncini V.: A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 15(10), 1533–1551 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Campbell J., Shashkov M.: A tensor artificial viscosity using a mimetic finite difference algorithm. J. Comput. Phys. 172, 739–765 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Cangiani A., Manzini G.: Flux reconstruction and pressure post-processing in mimetic finite difference methods. Comput. Methods Appl. Mech. Eng. 197(9-12), 933–945 (2008)

    Article  MathSciNet  Google Scholar 

  17. Castillo J.E., Grone R.D.: A matrix analysis approach to higher-order approximations for divergence and gradients satisfying a global conservation law. SIAM J. Matrix Anal. Appl. 25(1), 128–142 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Castillo, J.E., Hyman, J.M., Shashkov, M.J., Steinberg, S.: High-order mimetic finite difference methods on nonuniform grids. In: Ilin, A.V., Scott, L. R. (eds.) Special Issue of Houston Journal of Mathematics, pp. 347–361 (1995)

  19. Codecasa L., Trevisan F.: Constitutive equations for discrete electromagnetic problems over polyhedral grids. J. Comput. Phys. 225(2), 1894–1918 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Dvorak P.: New element lops time off CFD simulations. Mashine Des. 78(169), 154–155 (2006)

    Google Scholar 

  21. Eymard R., Gallouët T., Herbin R.: A new finite volume scheme for anisotropic diffusion problems on general grids: convergence analysis. C. R. Math. Acad. Sci. Paris 344(6), 403–406 (2007)

    MATH  MathSciNet  Google Scholar 

  22. Gyrya V., Lipnikov K.: High-order mimetic finite difference method for diffusion problems on polygonal meshes. J. Comput. Phys. 227(20), 8841–8854 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hermeline F.: A finite volume method for the approximation of diffusion operators on distorted meshes. J. Comput. Phys. 160(2), 481–499 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hyman J., Shashkov M.: Mimetic discretizations for Maxwell’s equations and the equations of magnetic diffusion. Progress Electromagn. Res. 32, 89–121 (2001)

    Article  Google Scholar 

  25. Hyman J., Shashkov M., Steinberg S.: The numerical solution of diffusion problems in strongly heterogeneous non-isotropic materials. J. Comput. Phys. 132, 130–148 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kuznetsov Y., Repin S.: New mixed finite element method on polygonal and polyhedral meshes. Russ. J. Numer. Anal. Math. Modelling 18(3), 261–278 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lipnikov K., Moulton J.D., Svyatskiy D.: A Multilevel Multiscale Mimetic (M3) method for two-phase flows in porous media. J. Comp. Phys. 227, 6727–6753 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. Margolin L., Shashkov M., Smolarkiewicz P.: A discrete operator calculus for finite difference approximations. Comput. Meth. Appl. Mech. Eng. 187, 365–383 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  29. Morel J., Roberts R., Shashkov M.: A local support-operators diffusion discretization scheme for quadrilateral rz meshes. J. Comput. Phys. 144, 17–51 (1998)

    Article  MathSciNet  Google Scholar 

  30. Perot J.B., Subramanian V.: Higher-order mimetic methods for unstructured meshes. J. Comput. Phys. 219(1), 68–85 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Beirão da Veiga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beirão da Veiga, L., Lipnikov, K. & Manzini, G. Convergence analysis of the high-order mimetic finite difference method. Numer. Math. 113, 325–356 (2009). https://doi.org/10.1007/s00211-009-0234-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-009-0234-6

Mathematics Subject Classification (2000)

Navigation