Skip to main content
Log in

A mimetic discretization of the Reissner–Mindlin plate bending problem

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We present a mimetic approximation of the Reissner–Mindlin plate bending problem which uses deflections and rotations as discrete variables. The method applies to very general polygonal meshes, even with non matching or non convex elements. We prove linear convergence for the method uniformly in the plate thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnold D.N., Falk R.S.: A uniformly accurate finite element method for the Reissner–Mindlin plate. SIAM J. Numer. Anal. 26(6), 1276–1290 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bathe K. J., Brezzi F., Cho S. W.: The MITC7 and MITC9 plate bending elements. Comp. Struct. 32(3-4), 797–814 (1989)

    Article  MATH  Google Scholar 

  3. Bathe K. J., Brezzi F., Fortin M.: Mixed-interpolated elements for Reissner–Mindlin plates. Int. J. Numer. Methods Eng. 28(8), 1787–1801 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bathe K. J., Dvorkin E. N.: A four-node plate bending element based on Mindlin–Reissner plate theory and a mixed interpolation. Int. J. Numer. Methods Eng. 21(2), 367–383 (1985)

    Article  MATH  Google Scholar 

  5. Beirão da Veiga L.: Finite element methods for a modified Reissner–Mindlin free plate model. SIAM J. Numer. Anal. 42(4), 1572–1591 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Beirão da Veiga L.: A residual based error estimator for the mimetic finite difference method. Numer. Math. 108(3), 387–406 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Beirão da Veiga L.: A mimetic discretization method for linear elasticity. M2AN Math. Model. Numer. Anal. 44(2), 231–250 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Beirão da Veiga L., Gyrya V., Lipnikov K., Manzini G.: Mimetic finite difference method for the Stokes problem on polygonal meshes. J. Comput. Phys. 228(19), 7215–7232 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Beirão da Veiga L., Lipnikov K.: A mimetic discretization of the Stokes problem with selected edge bubbles. SIAM J. Sci. Comp. 32(2), 875–893 (2010)

    Article  Google Scholar 

  10. Beirão da Veiga L., Lipnikov K., Manzini G.: Convergence analysis of the high-order mimetic finite difference method. Numer. Math. 113(3), 325–356 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Beirão da Veiga L., Lipnikov K., Manzini G.: Error analysis for a mimetic discretization for the steady Stokes problem on polyhedral meshes. SIAM J. Numer. Anal. 48(4), 1419–1443 (2010)

    Article  MathSciNet  Google Scholar 

  12. Beirão da Veiga L., Manzini G.: An a posteriori error estimator for the mimetic finite difference approximation of elliptic problems. Int. J. Numer. Methods Eng. 76(11), 1696–1723 (2008)

    Article  MATH  Google Scholar 

  13. Beirão da Veiga L., Manzini G.: A higher-order formulation of the mimetic finite difference method. SIAM J. Sci. Comp. 31(1), 732–760 (2008)

    Article  MATH  Google Scholar 

  14. Berndt M., Lipnikov K., Moulton J. D., Shashkov M.: Convergence of mimetic finite difference discretizations of the diffusion equation. East West J. Numer. Math. 9(4), 265–284 (2001)

    MATH  MathSciNet  Google Scholar 

  15. Berndt M., Lipnikov K., Shashkov M., Wheeler M. F., Yotov I.: Superconvergence of the velocity in mimetic finite difference methods on quadrilaterals. SIAM J. Numer. Anal. 43(4), 1728–1749 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Brenner S., Scott L.: The Mathematical Theory of Finite Element Methods. Springer, Berlin/ Heidelberg (1994)

    MATH  Google Scholar 

  17. Brezzi F., Buffa A., Lipnikov K.: Mimetic finite differences for elliptic problems. M2AN Math. Model. Numer. Anal. 43(2), 277–295 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Brezzi F., Fortin M.: Analysis of some low-order finite element schemes for Mindlin–Reissner plates. Math. Comp. 47(175), 151–158 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  19. Brezzi F., Fortin M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    MATH  Google Scholar 

  20. Brezzi F., Fortin M., Stenberg R.: Error analysis of mixed-interpolated elements for Reissner–Mindlin plates. Math. Models Methods Appl. Sci. 1(2), 125–151 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  21. Brezzi F., Lipnikov K., Shashkov M.: Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43(5), 1872–1896 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Brezzi F., Lipnikov K., Shashkov M., Simoncini V.: A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comput. Methods Appl. Mech. Eng. 196(37–40), 3682–3692 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Brezzi F., Lipnikov K., Simoncini V.: A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 15(10), 1533–1551 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Campbell J., Shashkov M.: A tensor artificial viscosity using a mimetic finite difference algorithm. J. Comput. Phys. 172(2), 739–765 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Cangiani A., Manzini G.: Flux reconstruction and pressure post-processing in mimetic finite difference methods. Comput. Methods Appl. Mech. Eng. 197(9-12), 933–945 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Cangiani A., Manzini G., Russo A.: Convergence analysis of the mimetic finite difference method for elliptic problems. SIAM J. Numer. Anal. 47(4), 2612–2637 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ciarlet, P. G.: Mathematical elasticity. In: Three Dimensional Elasticity, vol. 1. North-Holland, Amsterdam (1987)

  28. Droniou J., Eymard R.: Study of the mixed finite volume method for Stokes and Navier–Stokes equations. Numer. Methods Partial Differ. Equ. 25(1), 137–171 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Droniou J., Eymard R., Gallouet T., Herbin R.: A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume method. Math. Models Methods Appl. Sci. 20(2), 265–295 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  30. Dupont T., Scott R.: Polynomial approximation of functions in Sobolev spaces. Math. Comp. 34(150), 441–463 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  31. Durán R., Hernández E., Hervella-Nieto L., Liberman E., Rodríguez R.: Error estimates for low-order isoparametric quadrilateral finite elements for plates. SIAM J. Numer. Anal. 41(5), 1751–1772 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  32. Durán R., Liberman E.: On mixed finite elements methods for the Reissner–Mindlin plate model. Math. Comp. 58(198), 561–573 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  33. Gyrya V., Lipnikov K.: High-order mimetic finite difference method for diffusion problems on polygonal meshes. J. Comput. Phys. 227(20), 8841–8854 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  34. Hyman J., Morel J., Shashkov M., Steinberg S.: Mimetic finite difference methods for diffusion equations. Comput. Geosci. 6(3–4), 333–352 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  35. Hyman J., Shashkov M.: Mimetic discretizations for Maxwell’s equations and the equations of magnetic diffusion. Prog. Electromagn. Res. 32, 89–121 (2001)

    Article  Google Scholar 

  36. Hyman J., Shashkov M., Steinberg S.: The numerical solution of diffusion problems in strongly heterogeneous non-isotropic materials. J. Comput. Phys. 132(1), 130–148 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  37. Lipnikov K., Morel J., Shashkov M.: Mimetic finite difference methods for diffusion equations on non-orthogonal non-conformal meshes. J. Comput. Phys. 199(2), 589–597 (2004)

    Article  MATH  Google Scholar 

  38. Lipnikov K., Shashkov M., Yotov I.: Local flux mimetic finite difference methods. Numer. Math. 112(1), 115–152 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  39. Lyly M., Niiranen J., Stenberg R.: A refined error analysis of MITC plate elements. Math. Models Methods Appl. Sci. 16(7), 967–977 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  40. Margolin L., Shashkov M., Smolarkiewicz P.: A discrete operator calculus for finite difference approximations. Comput. Methods Appl. Mech. Eng. 187(3-4), 365–383 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  41. Morel J., Roberts R., Shashkov M.: A local support-operators diffusion discretization scheme for quadrilateral rz meshes. J. Comput. Phys. 144(1), 17–51 (1998)

    Article  MathSciNet  Google Scholar 

  42. Peisker P., Braess D.: Uniform convergence of mixed interpolated elements for Reissner–Mindlin plates. M2AN Math. Model. Numer. Anal. 26(5), 557–574 (1992)

    MATH  MathSciNet  Google Scholar 

  43. Pitkäranta J., Suri M.: Design principles and error analysis for reduced-shear plate-bending finite elements. Numer. Math. 75(2), 223–266 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  44. Toselli, A., Widlund, O.: Domain Decomposition Methods—Algorithms and Theory. Springer Ser. Comput. Math., vol. 34. Springer, New York (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Beirão da Veiga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beirão da Veiga, L., Mora, D. A mimetic discretization of the Reissner–Mindlin plate bending problem. Numer. Math. 117, 425–462 (2011). https://doi.org/10.1007/s00211-010-0358-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-010-0358-8

Mathematics Subject Classification (2000)

Navigation