Skip to main content
Log in

Robin–Robin domain decomposition methods for the steady-state Stokes–Darcy system with the Beavers–Joseph interface condition

Numerische Mathematik Aims and scope Submit manuscript

Abstract

Domain decomposition methods for solving the coupled Stokes–Darcy system with the Beavers–Joseph interface condition are proposed and analyzed. Robin boundary conditions are used to decouple the Stokes and Darcy parts of the system. Then, parallel and serial domain decomposition methods are constructed based on the two decoupled sub-problems. Convergence of the two methods is demonstrated and the results of computational experiments are presented to illustrate the convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Agoshkov, V.I.: Poincaré-Steklov operators and domain decomposition methods in finite dimensional spaces. In: First International Symposium on Domain Decomposition Methods for Partial Differential Equations (Paris, 1987), pp. 73–112. SIAM, Philadelphia (1988)

  2. Agoshkov V.I., Lebedev V.I.: Poincaré-Steklov operators and methods of partition of the domain in variational problems. Computat. Process. syst. 2, 173–227 (1985) (in Russian)

    MathSciNet  MATH  Google Scholar 

  3. Amara M., Capatina D., Lizaik L.: Coupling of Darcy-Forchheimer and compressible Navier-Stokes equations with heat transfer. SIAM J. Sci. Comput. 31(2), 1470–1499 (2008)

    Article  MathSciNet  Google Scholar 

  4. Arbogast T., Brunson D.S.: A computational method for approximating a Darcy-Stokes system governing a vuggy porous medium. Comput. Geosci. 11(3), 207–218 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arbogast T., Gomez M.: A discretization and multigrid solver for a Darcy-Stokes system of three dimensional vuggy porous media. Comput. Geosci. 13(3), 331–348 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Babuška I., Gatica G.N.: A residual-based a posteriori error estimator for the Stokes–Darcy coupled problem. SIAM J. Numer. Anal. 48(2), 498–523 (2010)

    Article  MathSciNet  Google Scholar 

  7. Badea L., Discacciati M., Quarteroni A.: Numerical analysis of the Navier-Stokes/Darcy coupling. Numer. Math. 115(2), 195–227 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Badia S., Codina R.: Unified stabilized finite element formulations for the Stokes and the Darcy problems. SIAM J. Numer. Anal 47(3), 1971–2000 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Beavers G., Joseph D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Article  Google Scholar 

  10. Bernardi C., Hecht F., Nouri F.Z.: A new finite-element discretization of the Stokes problem coupled with the Darcy equations. IMA J. Numer. Anal. 30(1), 61–93 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bernardi C., Hecht F., Pironneau O.: Coupling Darcy and Stokes equations for porous media with cracks. Math. Model. Numer. Anal. 39(1), 7–35 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bernardi C., Rebollo T.C., Hecht F., Mghazli Z.: Mortar finite element discretization of a model coupling Darcy and Stokes equations. Math. Model. Numer. Anal. 42(3), 375–410 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Boubendir Y., Tlupova S.: Stokes–Darcy boundary integral solutions using preconditioners. J. Comput. Phys. 228(23), 8627–8641 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bramble J.H., Pasciak J.E., Schatz A.H.: The construction of preconditioners for elliptic problems by substructuring I. Math. Comput. 47(175), 103–134 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Burman E., Hansbo P.: Stabilized Crouzeix-Raviart element for the Darcy-Stokes problem. Numer. Methods Partial Differ. Equ. 21(5), 986–997 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Burman E., Hansbo P.: A unified stabilized method for Stokes’ and Darcy’s equations. J. Comput. Appl. Math. 198(1), 35–51 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cai M., Mu M., Xu J.: Numerical solution to a mixed Navier-Stokes/Darcy model by the two-grid approach. SIAM J. Numer. Anal. 47(5), 3325–3338 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cai M., Mu M., Xu J.: Preconditioning techniques for a mixed Stokes/Darcy model in porous media applications. J. Comput. Appl. Math. 233(2), 346–355 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cao Y., Gunzburger M., Hu X., Hua F., Wang X., Zhao W.: Finite element approximation for Stokes–Darcy flow with Beavers–Joseph interface conditions. SIAM. J. Numer. Anal. 47(6), 4239–4256 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cao Y., Gunzburger M., Hua F., Wang X.: Coupled Stokes–Darcy model with Beavers–Joseph interface boundary condition. Comm. Math. Sci. 8(1), 1–25 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Çeşmelioğlu A., Rivière B.: Analysis of time-dependent Navier-Stokes flow coupled with Darcy flow. J. Numer. Math. 16(4), 249–280 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Çeşmelioğlu A., Rivière B.: Primal discontinuous Galerkin methods for time-dependent coupled surface and subsurface flow. J. Sci. Comput. 40(1–3), 115–140 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Chen N., Gunzburger M., Wang X.: Asymptotic analysis of the differences between the Stokes–Darcy system with different interface conditions and the Stokes-Brinkman system. J. Math. Anal. Appl. 368(2), 658–676 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chen W., Chen P., Gunzburger M., Yan N.: Superconvergence analysis of FEMs for the Stokes–Darcy system. Math. Methods Appl. Sci. 33(13), 1605–1617 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Chen, W., Gunzburger, M., Hua, F., Wang, X.: A parallel Robin–Robin domain decomposition method for the Stokes–Darcy system. SIAM. J. Numer. Anal. (to appear)

  26. Chidyagwai P., Rivière R.B.: On the solution of the coupled Navier-Stokes and Darcy equations. Comput. Methods Appl. Mech. Eng. 198(47–48), 3806–3820 (2009)

    Article  Google Scholar 

  27. Dawson C.: Analysis of discontinuous finite element methods for ground water/surface water coupling. SIAM J. Numer. Anal. 44(4), 1375–1404 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Discacciati, M.: Domain decomposition methods for the coupling of surface and groundwater flows. PhD thesis, Ecole Polytechnique Fédérale de Lausanne, Swizerland (2004)

  29. Discacciati, M.: Iterative methods for Stokes/Darcy coupling. In: Domain Decomposition Methods in Science and Engineering. Lect. Notes Comput. Sci. Eng., vol. 40, pp. 563–570. Springer, Berlin (2005)

  30. Discacciati M., Miglio E., Quarteroni A.: Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43(1–2), 57–74 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Discacciati, M., Quarteroni, A.: Analysis of a domain decomposition method for the coupling of Stokes and Darcy equations. In: Numerical Mathematics and Advanced Applications, pp. 3–20. Springer Italia, Milan (2003)

  32. Discacciati M., Quarteroni A.: Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations. Comput. Vis. Sci. 6(2–3), 93–103 (2004)

    MathSciNet  MATH  Google Scholar 

  33. Discacciati M., Quarteroni A., Valli A.: Robin–Robin domain decomposition methods for the Stokes–Darcy coupling. SIAM J. Numer. Anal. 45(3), 1246–1268 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ervin V.J., Jenkins E.W., Sun S.: Coupled generalized nonlinear Stokes flow with flow through a porous medium. SIAM J. Numer. Anal. 47(2), 929–952 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Feng M., Qi R., Zhu R., Ju B.: Stabilized Crouzeix-Raviart element for the coupled Stokes and Darcy problem. Appl. Math. Mech. 31(3), 393–404 (2010) (English Ed.)

    Article  MathSciNet  MATH  Google Scholar 

  36. Galvis, J., Sarkis, M.: Balancing domain decomposition methods for mortar coupling Stokes–Darcy systems. In: Domain Decomposition Methods in Science and Engineering XVI. Lect. Notes Comput. Sci. Eng., vol. 55, pp. 373–380. Springer, Berlin (2007)

  37. Galvis J., Sarkis M.: Non-matching mortar discretization analysis for the coupling Stokes–Darcy equations. Electron. Trans. Numer. Anal. 26, 350–384 (2007)

    MathSciNet  MATH  Google Scholar 

  38. Galvis J., Sarkis M.: FETI and BDD preconditioners for Stokes-Mortar-Darcy systems. Commun. Appl. Math. Comput. Sci. 5, 1–30 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Gander M.: Optimized Schwarz methods. SIAM J. Numer. Anal. 44(2), 699–731 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Gatica G.N., Meddahi S., Oyarzúa R.: A conforming mixed finite-element method for the coupling of fluid flow with porous media flow. IMA J. Numer. Anal. 29(1), 86–108 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Girault V., Rivière B.: DG approximation of coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman interface condition. SIAM J. Numer. Anal 47(3), 2052–2089 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Guest J.K., Prévost J.H.: Topology optimization of creeping fluid flows using a Darcy-Stokes finite element. Int. J. Numer. Methods Eng. 66(3), 461–484 (2006)

    Article  MATH  Google Scholar 

  43. Hoppe R., Porta P., Vassilevski Y.: Computational issues related to iterative coupling of subsurface and channel flows. CALCOLO 44(1), 1–20 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Hua, F.: Modeling, analysis and simulation of Stokes–Darcy system with Beavers–Joseph interface condition. Ph.D. dissertation, The Florida State University (2009)

  45. Jäger W., Mikeliä A.: On the interface boundary condition of Beavers, Joseph, and Saffman. SIAM J. Appl. Math. 60(4), 1111–1127 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  46. Jiang B.: A parallel domain decomposition method for coupling of surface and groundwater flows. Comput. Methods Appl. Mech. Eng. 198(9–12), 947–957 (2009)

    Article  Google Scholar 

  47. Jones I.: Low Reynolds number flow past a porous spherical shell. Proc. Camb. Phil. Soc. 73, 231–238 (1973)

    Article  MATH  Google Scholar 

  48. Kanschat G., Riviére B.: A strongly conservative finite element method for the coupling of Stokes and Darcy flow. J. Comput. Phys. 229, 5933–5943 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Karper T., Mardal K.A., Winther R.: Unified finite element discretizations of coupled Darcy-Stokes flow. Numer. Methods Partial Differ. Equ. 25(2), 311–326 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  50. Layton W.J., Schieweck F., Yotov I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40(6), 2195–2218 (2002)

    Article  MathSciNet  Google Scholar 

  51. Lions, P.-L.: On the Schwarz alternating method. III. A variant for nonoverlapping subdomains. In: Third International Symposium on Domain Decomposition Methods for Partial Differential Equations (Houston, TX, 1989), pp. 202–223. SIAM, Philadelphia (1990)

  52. Mardal K.A., Tai X.C., Winther R.: A robust finite element method for Darcy-Stokes flow. SIAM J. Numer. Anal. 40(5), 1605–1631 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  53. Masud A.: A stabilized mixed finite element method for Darcy-Stokes flow. Int. J. Numer. Methods Fluids 54(6-8), 665–681 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  54. Mu M., Xu J.: A two-grid method of a mixed Stokes–Darcy model for coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 45(5), 1801–1813 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  55. Nassehi V., Petera J.: A new least-squares finite element model for combined Navier-Stokes and darcy flows in geometrically complicated domains with solid and porous boundaries. Int. J. Numer. Methods Eng. 37(9), 1609–1620 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  56. Popov P., Efendiev Y., Qin G.: Multiscale modeling and simulations of flows in naturally fractured karst reservoirs. Commun. Comput. Phys. 6(1), 162–184 (2009)

    Article  MathSciNet  Google Scholar 

  57. Quarteroni, A., Valli, A.: Domain decomposition methods for partial differential equations. In: Numerical Mathematics and Scientific Computation. Oxford Science Publications, New York (1999)

  58. Rivière B.: Analysis of a discontinuous finite element method for the coupled Stokes and Darcy problems. J. Sci. Comput. 22(23), 479–500 (2005)

    Article  MathSciNet  Google Scholar 

  59. Rivière B., Yotov I.: Locally conservative coupling of Stokes and Darcy flows. SIAM J. Numer. Anal. 42(5), 1959–1977 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  60. Rui H., Zhang R.: A unified stabilized mixed finite element method for coupling Stokes and Darcy flows. Comput. Methods Appl. Mech. Eng. 198(33–36), 2692–2699 (2009)

    Article  MathSciNet  Google Scholar 

  61. Saffman P.: On the boundary condition at the interface of a porous medium. Stud. Appl. Math. 1, 77–84 (1971)

    Google Scholar 

  62. Salinger A.G., Aris R., Derby J.J.: Finite element formulations for large-scale, coupled flows in adjacent porous and open fluid domains. Int. J. Numer. Methods Fluids 18(12), 1185–1209 (1994)

    Article  MATH  Google Scholar 

  63. Tai X.C., Winther R.: A discrete de Rham complex with enhanced smoothness. CALCOLO 43(4), 287–306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  64. Tlupova S., Cortez R.: Boundary integral solutions of coupled Stokes and Darcy flows. J. Comput. Phys. 228(1), 158–179 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  65. Urquiza J.M., N’Dri D., Garon A., Delfour M.C.: Coupling Stokes and Darcy equations. Appl. Numer. Math. 58(5), 525–538 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  66. Xie X., Xu J., Xue G.: Uniformly-stable finite element methods for Darcy-Stokes-Brinkman models. J. Comput. Math. 26(3), 437–455 (2008)

    MathSciNet  MATH  Google Scholar 

  67. Xu J., Zou J.: Some nonoverlapping domain decomposition methods. SIAM Rev. 40(4), 857–914 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  68. Xu X., Zhang S.: A new divergence-free interpolation operator with applications to the Darcy-Stokes-Brinkman equations. SIAM J. Sci. Comput. 32(2), 855–874 (2010)

    Article  MathSciNet  Google Scholar 

  69. Zhang S., Xie X., Chen Y.: Low order nonconforming rectangular finite element methods for Darcy-Stokes problems. J. Comput. Math. 27(2–3), 400–424 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming He.

Additional information

This work is supported in part by the CMG program of the National Science Foundation under grant numbers DMS-0620035 (for MG, XH, and XW) and DMS-0914554 (for YC).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, Y., Gunzburger, M., He, X. et al. Robin–Robin domain decomposition methods for the steady-state Stokes–Darcy system with the Beavers–Joseph interface condition. Numer. Math. 117, 601–629 (2011). https://doi.org/10.1007/s00211-011-0361-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-011-0361-8

Mathematics Subject Classification (2010)

Navigation