Skip to main content
Log in

Conformal Restriction, Highest-Weight Representations and SLE

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show how to relate Schramm-Loewner Evolutions (SLE) to highest-weight representations of infinite-dimensional Lie algebras that are singular at level two, using the conformal restriction properties studied by Lawler, Schramm and Werner in [33]. This confirms the prediction from conformal field theory that two-dimensional critical systems are related to degenerate representations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlfors, L.V.: Complex Analysis. 3rd Ed., New-York: McGraw-Hill, 1978

  2. Aizenman, M.: The geometry of critical percolation and conformal invariance. In: StatPhys 19 (Xiamen 1995), River Edg, NJ: World Sci. Publishing, 1996, pp. 104–120

  3. Bauer, M., Bernard, D.: SLEκ growth and conformal field theories. Phys. Lett. B543, 135–138 (2002)

    Google Scholar 

  4. Bauer, M., Bernard, D.: Conformal Field Theories of Stochastic Loewner Evolutions. Commun. Math. Phys., to appear, 2003

  5. Beffara, V.: The dimension of the SLE curves. arxiv:math.PR/0211322, Preprint, 2002

  6. Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry of critical fluctuations in two dimensions. J. Statist. Phys. 34, 763–774 (1984)

    MathSciNet  Google Scholar 

  7. Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B241, 333–380 (1984)

    Google Scholar 

  8. Cardy, J.L.: Conformal invariance and surface critical behavior. Nucl. Phys. B240 (FS12), 514–532 (1984)

    Google Scholar 

  9. Cardy, J.L.: Critical percolation in finite geometries. J. Phys. A25, L201–206 (1992)

    Google Scholar 

  10. Cardy, J.L.: Conformal Invariance in Percolation, Self-Avoiding Walks and Related Problems. cond-mat/0209638, Preprint, 2003

  11. Dubédat, J.: SLE and triangles. Electr. Comm. Probab. 8, 28–42 (2003)

    Google Scholar 

  12. Dubédat, J.: SLE(κ, ρ) martingales and duality. arxiv:math.PR/0303128, Preprint, 2003

  13. Duplantier, B.: Conformally invariant fractals and potential theory. Phys. Rev. Lett. 84, 1363–1367 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Duplantier, B., Saleur, H.: Exact surface and wedge exponents for polymers in two dimensions. Phys. Rev. Lett. 57, 3179–3182 (1986)

    Google Scholar 

  15. Feigin, B.L., Fuks, D.B.: Skew-symmetric invariant differential operators on the line and Verma modules over the Virasoro algebra. Funct. Anal. Appl. 16, 114–126 (1982)

    Google Scholar 

  16. Frenkel, E., Ben-Zvi, D.: Vertex Algebras and Algebraic curves. A.M.S. monographs 88, Providence, RI: Aus, 2001

  17. Friedrich, R., Kalkkinen, J.: On conformal field theory and stochastic Loewner evolution, arxiv:hep-th/0308020, Preprint, 2003

  18. Friedrich, R., Werner, W.: Conformal fields, restriction properties, degenerate representations and SLE. C.R. Acad. Sci. Paris Ser. I. Math. 335, 947-952 (2002)

    Article  MATH  Google Scholar 

  19. Goddard, P., Olive, D., ed.: Kac-Moody and Virasoro algebras. A reprint volume for physicists. Advanced Series in Mathematical Physics 3, Singapore: World Scientific, 1988

  20. Itzykson, C., Drouffe, J.-M.: Statistical field theory. Vol. 2. Strong coupling, Monte Carlo methods, conformal field theory, and random systems. Cambridge: Cambridge University Press, 1989

  21. Itzykson, C., Saleur, H., Zuber, J.-B., ed.: Conformal invariance and applications to statistical mechanics. Singapore: World Scientific, 1988

  22. Kac, V.G.: Infinite-dimensional Lie Algebras. 3rd Ed, Combridge: CUP, 1990

  23. Kac, V.G., Raina, A.K.: Bombay lectures on highest weight representations of infinite-dimensional Lie algebras. Advanced Series in Mathematical Physics 2, Singapore: World Scientific, 1987

  24. Kennedy, T.G.: Monte-Carlo tests of Stochastic Loewner Evolution predictions for the 2D self-avoiding walk. Phys. Rev. Lett. 88, 130601 (2002)

    Article  Google Scholar 

  25. Langlands, R., Pouliot, Y., Saint-Aubin, Y.: Conformal invariance in two-dimensional percolation. Bull. A.M.S. 30, 1–61 (1994)

    MathSciNet  MATH  Google Scholar 

  26. Lawler, G.F.: An introduction to the stochastic Loewner evolution, Proceeding of a conference on random walks. ESI Vienna, to appear, 2001

  27. Lawler, G.F., Schramm, O., Werner, W.: Values of Brownian intersection exponents I: Half-plane exponents. Acta Math. 187, 237–273 (2001)

    MathSciNet  MATH  Google Scholar 

  28. Lawler, G.F., Schramm, O., Werner, W.: Values of Brownian intersection exponents II: Plane exponents. Acta Math. 187, 275–308 (2001)

    MathSciNet  MATH  Google Scholar 

  29. Lawler, G.F., Schramm, O., Werner, W.: Values of Brownian intersection exponents III: Two sided exponents. Ann. Inst. Henri Poincaré 38, 109–123 (2002)

    Article  MATH  Google Scholar 

  30. Lawler, G.F., Schramm, O., Werner, W.: One-arm exponent for critical 2D percolation. Electronic J. Probab. 7(2), (2002)

  31. Lawler, G.F., Schramm, O., Werner, W.: Conformal invariance of planar loop-erased random walks and uniform spanning trees. arXiv:math.PR/0112234, Ann. Prob., to appear, 2003

  32. Lawler, G.F., Schramm, O., Werner, W.: On the scaling limit of planar self-avoiding walks. arXiv:math.PR/0204277. In Fractal geometry and application, A jubilee of Benoit Mandelbrot, AMS Proc. Symp. Pure Math., to appear, 2002

  33. Lawler, G.F., Schramm, O., Werner, W.: Conformal restriction. The chordal case. J. Amer. Math. Soc. 16, 917–955 (2003)

    Article  MATH  Google Scholar 

  34. Lawler, G.F., Werner, W.: Universality for conformally invariant intersection exponents. J. Europ. Math. Soc. 2, 291-328 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lawler, G.F., Werner, W.: The Brownian loop-soup. Probab. Theor. Relat. Fields, to appear, 2003

  36. Neretin, Yu. A.: Representations of Virasoro and affine Lie Algebras. In: Representation theory and non-commutative harmonic analysis I, A.A. Kirillov, (ed.), Berlin-Heidelberg-New York: Springer, 1994, pp. 157–225

  37. Nienhuis, B. Coulomb gas description of 2D critical behaviour. J. Stat. Phys. 34, 731–761 (1984)

    Google Scholar 

  38. Polyakov, A.M.: A non-Hamiltonian approach to conformal field theory. Sov. Phys. JETP 39, 10–18 (1974)

    MATH  Google Scholar 

  39. Rohde, S., Schramm, O.: Basic properties of SLE. Ann. Math., to appear, 2003

  40. Schramm, O.: Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118, 221–288 (2000)

    MathSciNet  MATH  Google Scholar 

  41. Schramm, O.: A percolation formula, Electr. Comm. Prob. 6, 115–120 (2001)

    MathSciNet  MATH  Google Scholar 

  42. Smirnov, S.: Critical percolation in the plane: Conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math. 333(3), 239–244 (2001)

    MATH  Google Scholar 

  43. Smirnov, S., Werner, W.: Critical exponents for two-dimensional percolation. Math. Res. Lett. 8, 729–744 (2001)

    MATH  Google Scholar 

  44. Werner, W.: Random planar curves and Schramm-Loewner Evolutions. Lecture Notes of the 2002 St-Flour summer school, Berlin-Heidelberg-New York: Springer, to appear 2002

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendelin Werner.

Additional information

Communicated by A. Kupiainen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedrich, R., Werner, W. Conformal Restriction, Highest-Weight Representations and SLE. Commun. Math. Phys. 243, 105–122 (2003). https://doi.org/10.1007/s00220-003-0956-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-003-0956-8

Keywords

Navigation