Skip to main content
Log in

Exponential Distribution for the Occurrence of Rare Patterns in Gibbsian Random Fields

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the distribution of the occurrence of rare patterns in sufficiently mixing Gibbs random fields on the lattice ℤd, d≥2. A typical example is the high temperature Ising model. This distribution is shown to converge to an exponential law as the size of the pattern diverges. Our analysis not only provides this convergence but also establishes a precise estimate of the distance between the exponential law and the distribution of the occurrence of finite patterns. A similar result holds for the repetition of a rare pattern. We apply these results to the fluctuation properties of occurrence and repetition of patterns: We prove a central limit theorem and a large deviation principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abadi, M.: Exponential approximation for hitting times in mixing processes. Math. Phys. Electron. J. 7 (2001)

  2. Abadi, M., Galves, A.: Inequalities for the occurrence of rare events in mixing processes. The state of the art. In: ‘Inhomogeneous random systems’ (Cergy-Pontoise, 2000), Markov Process. Related Fields 7(1), 97–112 (2001)

    MATH  Google Scholar 

  3. Asselah, A., Dai Pra, P.: Sharp estimates for the occurrence time of rare events for symmetric simple exclusion. Stochastic Process. Appl. 71(2), 259–273 (1997)

    Article  MATH  Google Scholar 

  4. Asselah, A., Dai Pra, P.: Occurrence of rare events in ergodic interacting spin systems. Ann. Inst. H. Poincaré Probab. Statist. 33(6), 727–751 (1997)

    Article  MATH  Google Scholar 

  5. Bowen, R.: Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Lecture Notes in Math. 470, Berlin-Heidelberg-New York: Springer, 1975

  6. Bryc, W.: A remark on the connection between the large deviation principle and the central limit theorem. Statist. & Probab. Lett. 18, 253–256 (1993)

    Google Scholar 

  7. Chazottes, J.-R.: Dimensions and waiting time for Gibbs measures. J. Stat. Phys. 98(3/4), 305–320 (2000)

    Google Scholar 

  8. Chi, Z.: The first-order asymptotic of waiting times with distortion between stationary processes. IEEE Trans. Inform. Theory 47(1), 338–347 (2001)

    MATH  Google Scholar 

  9. Collet, P., Galves, A., Schmitt, B.: Fluctuations of repetition times for gibbsian sources. Nonlinearity 12, 1225–1237 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Comets, F.: Grandes déviations pour des champs de Gibbs sur ℤd. CRAS, t. 303(11), 511–513 (1986)

    Google Scholar 

  11. Dembo, A., Kontoyiannis, I.: Source coding, large deviations and approximate pattern matching. IEEE Trans. Inf. Theory 48(6), 1590–1615 (2002)

    Article  Google Scholar 

  12. Dembo, A., Zeitouni, O.: Large Deviations Techniques & Applications. Applic. Math. 38, Berlin-Heidelberg-New York: Springer, 1998

  13. Dobrushin, R.L., Shlosman, S.B.: Completely analytical interactions: constructive description. J. Stat. Phys. 46(5-6), 983–1014 (1987)

    Google Scholar 

  14. Ellis, R.S.: Entropy, large deviations, and statistical mechanics. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 271, New York: Springer- Verlag, 1985

  15. Daniëls, H.A.M., van Enter, A.C.D.: Differentiability properties of the pressure in lattice systems. Commun. Math. Phys. 71(1), 65–76 (1980)

    Google Scholar 

  16. Georgii, H.-O.: Gibbs Measures and Phase Transitions. Berlin: Walter de Gruyter & Co., 1988

  17. Guyon, X.: Random Fields on a Network. Modeling, Statistics and Applications. New York-Berlin: Springer Verlag, 1995

  18. Haydn, N., Luévano, J., Mantica, G., Vaienti, S.: Multifractal Properties of Return Time Statistics. Phys.Rev. Lett. 88(22), (2002)

  19. Krengel, U.: Ergodic theorems. de Gruyter Studies in Mathematics 6, Berlin: Walter de Gruyter & Co., 1985

  20. Föllmer, H.: On entropy and information gain in random fields. Z. Wahrsch. Theorie Verw. Gebiete 26, 207–217 (1973)

    Google Scholar 

  21. Martinelli, F.: An elementary approach to finite size conditions for the exponential decay of covariances in lattice spin models. In: On Dobrushin’s way. From probability theory to statistical physics, Am. Math. Soc. Transl. Ser. 2, 198, Providence, RI: Am. Math. Soc., 2000, pp. 169–181

  22. Olla, S.: Large deviations for Gibbs random fields. Prob. Th. Rel. Fields 77, 343–357 (1988)

    MathSciNet  MATH  Google Scholar 

  23. Ornstein, D., Weiss, B.: Entropy and recurrence rates for stationary random fields. Special issue on Shannon theory: perspective, trends, and applications. IEEE Trans. Inform. Theory 48(6), 1694–1697 (2002)

    Google Scholar 

  24. Plachky, D., Steinebach, J.A.: A theorem about probabilities of large deviations with an application to queuing theory. Periodica Math. Hungar. 6, 343–345 (1975)

    MATH  Google Scholar 

  25. Ruelle, D.: Thermodynamic formalism. The mathematical structures of classical equilibrium statistical mechanics. Encyclopdia of Mathematics and its Applications 5. Reading, Mass.: Addison-Wesley Publishing Co., 1978

  26. Shields, P.C.: The ergodic theory of discrete sample paths. Providence, RI: AMS, 1996

  27. Simon, B.: The statistical mechanics of lattice gases. Vol. I. Princeton Series in Physics. Princeton, NJ: Princeton University Press, 1993

  28. Thouvenot, J.P.: Convergence en moyenne de l’information pour l’action de ℤ2. Z. Wahrsch. Theorie Verw. Gebiete 24, 135–137 (1972)

    MATH  Google Scholar 

  29. Wyner, A.J.: More on recurrence and waiting times. Ann. Appl. Probab. 9(3), 780–796 (1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Redig.

Additional information

H. Spohn

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abadi, M., Chazottes, JR., Redig, F. et al. Exponential Distribution for the Occurrence of Rare Patterns in Gibbsian Random Fields. Commun. Math. Phys. 246, 269–294 (2004). https://doi.org/10.1007/s00220-004-1041-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-004-1041-7

Keywords

Navigation