Skip to main content
Log in

A Definition of Total Energy-Momenta and the Positive Mass Theorem on Asymptotically Hyperbolic 3-Manifolds. I

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Two sets of asymptotically hyperbolic initial data are defined, which correspond to the spatial infinity in asymptotically AdS spacetimes and to the null infinity in asymptotically Minkowski spacetimes respectively. The positive mass theorem involving the total energy, the total linear momentum and the total angular momentum is established for these initial data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersson, L., Dahl, M.: Scalar curvature rigidity for asymptotically locally hyperbolic manifolds. Ann. Glob. Anal. Geom. 16, 1–27 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnowitt, S., Deser, S., Misner, C.: Coordinate invariance and energy expressions in general relativity. Phys. Rev. 122, 997–1006 (1961)

    Article  MATH  Google Scholar 

  3. Ashtekar, A., Das, S.: Asymptotically anti-de Sitter spacetimes: conserved quantities. Class Quantum Grav. 17, L17–L30 (2000)

    Google Scholar 

  4. Ashtekar, A., Hansen, R.: A unified treatment of null and spatial infinity in general relativity. I. Universal structure, asymptotic symmetries, and conserved quantities at spatial infinity. J. Math. Phys. 19, 1542–1566 (1978)

    Google Scholar 

  5. Ashtekar, A., Horowitz, G.: Energy-momentum of isolated systems cannot be null. Phys. Lett. 89A, 181–184 (1982)

    Article  MathSciNet  Google Scholar 

  6. Ashtekar, A., Magnon, A.: From i° to the 3+1 description of spatial infinity. J. Math. Phys. 25, 2682–2690 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bartnik, R.: The mass of an asymptotically flat manifold. Comm. Pure Appl. Math. 36, 661–693 (1986)

    MathSciNet  Google Scholar 

  8. Bartnik, R.: Quasi-spherical metrics and prescribed scalar curvature. J. Diff. Geom. 37, 31–71 (1993)

    MathSciNet  MATH  Google Scholar 

  9. Bondi, H., van der Burg, H., Metzner, A.: Gravitational waves in general relativity VII. Waves from isolated axi-symmetric systems. Proc. Roy. Soc. Lond. A 269, 21–52 (1962)

    MATH  Google Scholar 

  10. Bray, H.: Proof of the Riemannian Penrose conjecture using the positive mass theorem. J. Diff. Geom. 59, 177–267 (2001)

    MATH  Google Scholar 

  11. Bryant, R.: Surfaces of mean curvature one in hyperbolic space. Astérisque 154–155, 321–347 (1987)

    Google Scholar 

  12. Chruściel, P.: Boundary conditions at spatial infinity from a Hamiltonian point of view. In: Topological Properties and Global Structure of Space-Time (Erice, 1985), NATO, Adv. Sci. Inst. Ser. B: Phys. 138, New York: Plenum 1986, pp. 49–59

  13. Chruściel, P.: On angular momentum at spatial infinity. Class. Quantum Grav. 4, L205–210 (1987)

    Google Scholar 

  14. Chruściel, P., Herzlich, M.: The mass of asymptotically hyperbolic Riemannian manifolds. math.DG/0110035

  15. Chruściel, P., Jezierski, J., MacCallum, M.: Uniqueness of the Trautman-Bondi mass. Phys. Rev. D58, 084001 (1998)

  16. Chruściel, P., Nagy, G.: The mass of spacelike hypersurfaces in asymptotically anti-de Sitter space-times. Adv. Theor. Math. Phys. 5, 697–754 (2001)

    MathSciNet  Google Scholar 

  17. Delay, E.: Analyse précisée d’équations semi-linéaires elliptiques sur l’espace hyperbolique et application à la courbure scalaire conforme. Bull. Soc. Math. France 125, 345–381 (1997)

    MathSciNet  MATH  Google Scholar 

  18. Folland, G.: Introduction to Partial Differential Equations (Second Edition). Princeton, NJ: Princeton University Press, 1995

  19. Gibbons, G., Hawking, S., Horowitz, G., Perry, M.: Positive mass theorems for black holes. Commun. Math. Phys. 88, 295–308 (1983)

    MathSciNet  Google Scholar 

  20. Graham, C., Lee, J.: Einstein metrics with prescribed conformal infinity on the ball. Adv. Math. 87, 186–225 (1991)

    MathSciNet  MATH  Google Scholar 

  21. Herzlich, M.: A Penrose-like inequality for the mass of Riemannian asymptotically flat manifolds. Commun. Math. Phys. 188, 121–133 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Herzlich, M.: The positive mass theorem for black holes revisited. J. Geom. Phys. 26, 97–111 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Herzlich, M.: Scalar curvature and rigidity of odd-dimensional complex hyperbolic spaces. Math. Ann. 312, 641–657 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Huisken, G., Ilmanen, T.: The inverse mean curvature flow and the Riemannian Penrose inequality. J. Diff. Geom. 59, 353–437 (2001)

    MathSciNet  MATH  Google Scholar 

  25. Horowitz, G., Myers, R.: The AdS/CFT correspondence and a new positive energy conjecture for general relativity. Phys. Rev. D59, 026005 (1999)

  26. Horowitz, G., Perry, M.: Gravitational energy cannot become negative. Phys. Rev. Lett. 48, 371–374 (1982)

    Article  MathSciNet  Google Scholar 

  27. Horowitz, G., Tod, P.: A relation between local and total energy in general relativity. Commun. Math. Phys. 85, 429–447 (1982)

    MathSciNet  MATH  Google Scholar 

  28. Israel, W., Nester, J.: Positivity of the Bondi gravitational mass. Phys. Lett. 85A, 259–260 (1981)

    Article  MathSciNet  Google Scholar 

  29. Lawson, H., Michelsohn, M.: Spin Geometry. Princeton Math. Series, Vol. 38, Princeton, NJ: Princeton University Press, 1989

  30. Lee, J.: The specturm of an asymptotically hyperbolic Einstein manifold. Comm. Anal. Geom. 3, 253–271 (1995)

    MathSciNet  Google Scholar 

  31. Lee, J., Parker, T.: The Yamabe problem. Bull. Am. Math. Soc. 17, 31–81 (1987)

    Google Scholar 

  32. Ludvigsen, M., Vickers, J.: A simple proof of the positivity of the Bondi mass. J. Phys. A: Math. Gen. 15, L67–L70 (1982)

    Google Scholar 

  33. Min-Oo, M.: Scalar curvature rigidity of asymptotically hyperbolic spin manifolds. Math. Ann. 285, 527–539 (1989)

    MathSciNet  MATH  Google Scholar 

  34. Nester, J.: A new gravitational energy expression with a simple positivity proof. Phys. Lett. 83A, 241–242 (1981)

    Article  MathSciNet  Google Scholar 

  35. Parker, T., Taubes, C.: On Witten’s proof of the positive energy theorem. Commun. Math. Phys. 84, 223–238 (1982)

    MathSciNet  MATH  Google Scholar 

  36. Penrose, R.: Some unsolved problems in classical general relativity. In: Seminar on Differential Geometry, ed. S.-T. Yau, Annals of Math. Stud. 102, Princeton, NJ: Princeton Univ. Press, 1982, pp. 631–668

  37. Regge, T., Teitelboim, C.: Role of surface integrals in the Hamiltonian formulation of general relativity. Ann. Phys. 88, 286–318 (1974)

    MATH  Google Scholar 

  38. Reula, O., Tod, K.: Positivity of the Bondi energy. J. Math. Phys. 25, 1004–1008 (1984)

    Article  MathSciNet  Google Scholar 

  39. Rossman, W., Umehara, M., Yamada, K.: Mean curvature 1 surfaces in hyperbolic 3-space with lower total curvature I. math.DG/0008015

  40. Rossman, W., Umehara, M., Yamada, K.: Mean curvature 1 surfaces in hyperbolic 3-space with lower total curvature II. math.DG/0102035

  41. Sachs, R.: Gravitational waves in general relativity VIII. Waves in asymptotically flat space-time. Proc. Roy. Soc. Lond, A 270, 103–126 (1962)

    Google Scholar 

  42. Schoen, R., Yau, S.-T.: On the proof of the positive mass conjecture in general relativity. Commun. Math. Phys. 65, 45–76 (1979)

    MathSciNet  MATH  Google Scholar 

  43. Schoen, R., Yau, S.-T.: The energy and the linear momentum of spacetimes in general relativity. Commun. Math. Phys. 79, 47–51 (1981)

    MathSciNet  MATH  Google Scholar 

  44. Schoen, R., Yau, S.-T.: Proof of the positive mass theorem. II. Commun. Math. Phys. 79, 231–260 (1981)

    MATH  Google Scholar 

  45. Schoen, R., Yau, S.-T.: Proof that the Bondi mass is positive. Phys. Rev. Lett. 48, 369–371 (1982)

    Article  MathSciNet  Google Scholar 

  46. Schoen, R., Yau, S.-T.: The existence of a black hole due to condensation of matter. Commun. Math. Phys. 90, 575–579 (1983)

    MathSciNet  MATH  Google Scholar 

  47. Umehara, M., Yamada, K.: Complete surface of constant mean curvature-1 in the hyperbolic 3-space. Ann. Math. 137, 611–638 (1993)

    MathSciNet  MATH  Google Scholar 

  48. Wang, X.: Mass for asymptotically hyperbolic manifolds. J. Diff. Geom. 57, 273–299 (2001)

    MathSciNet  MATH  Google Scholar 

  49. Witten, E.: A new proof of the positive energy theorem. Commun. Math. Phys. 80, 381–402 (1981)

    MathSciNet  MATH  Google Scholar 

  50. Yau, S.-T.: Geometry of three manifolds and existence of black hole due to boundary effect. Adv. Theor. Math. Phys. 5, 755–767 (2001)

    MathSciNet  MATH  Google Scholar 

  51. York, J.: Energy and momentum of the gravitational field. In: Essays in General Relativity, ed. F.J. Tipler, New York: Academic Press, 1980

  52. Zhang, X.: Angular momentum and positive mass theorem. Commun. Math. Phys. 206, 137–155 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zhang, X.: Strongly asymptotically hyperbolic spin manifolds. Math. Res. Lett. 7, 719–728 (2000)

    MathSciNet  MATH  Google Scholar 

  54. Zhang, X.: Remarks on the total angular momentum in general relativity. Commun. Theor. Phys. 39, 521–524 (2003)

    Google Scholar 

  55. Zhang, X.: In preparation

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Zhang.

Additional information

Communicated by G.W. Gibbons

Research partially supported by National Natural Science Foundation of China under grant 10231050 and the innovation project of the Chinese Academy of Sciences.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X. A Definition of Total Energy-Momenta and the Positive Mass Theorem on Asymptotically Hyperbolic 3-Manifolds. I. Commun. Math. Phys. 249, 529–548 (2004). https://doi.org/10.1007/s00220-004-1056-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-004-1056-0

Keywords

Navigation