Skip to main content
Log in

Determinantal Processes with Number Variance Saturation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Consider Dyson’s Hermitian Brownian motion model after a finite time S, where the process is started at N equidistant points on the real line. These N points after time S form a determinantal process and has a limit as N→∞. This limting determinantal process has the interesting feature that it shows number variance saturation. The variance of the number of particles in an interval converges to a limiting value as the length of the interval goes to infinity. Number variance saturation is also seen for example in the zeros of the Riemann ζ-function, [21, 2]. The process can also be constructed using non-intersecting paths and we consider several variants of this construction. One construction leads to a model which shows a transition from a non-universal behaviour with number variance saturation to a universal sine-kernel behaviour as we go up the line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman, M., Goldstein, S., Lebowitz, J.L.: Bounded fluctuations and translation symmetry breaking in one-dimensional particle systems. J. Stat. Phys. 103, 601–618 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berry, M.V.: Semiclassical formula for the number variance of the Riemann zeros. Nonlinearity 1, 399–407 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berry, M.V., Keating, J.P.: The Riemann Zeros and Eigenvalue Asymptotics. SIAM Review 41, 236–266 (1999)

    MathSciNet  MATH  Google Scholar 

  4. Boas, R.P.: Entire Functions. New York: Academic Press, 1954

  5. Bohigas, O., Giannoni, M.J., Schmit, C.: Characterization of chaotic quantum spectra and universality of level fluctuation laws. Phys. Rev. Lett. 52, 1–4 (1984)

    Article  MathSciNet  Google Scholar 

  6. Borodin, A.: Biorthogonal ensembles. Nucl. Phys. B 536, 704–732 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Breiman, L.: Probability. Reading, MA: Addison-Wesley, 1968

  8. Coram, M., Diaconis, P.: New test of the correspondence between unitary eigenvalues and the zeros of Riemann’s zeta function. J. Phys. A:Math. Gen. 36, 2883–2906 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dyson, F.J.: A Brownian-motion Model for the Eigenvalues of a Random Matrix. J. Math. Phys. 3, 1191–1198 (1962)

    MATH  Google Scholar 

  10. Dyson, F.J., Mehta, M.L.: Statistical theory of energy levels of complex systems IV. J. Math. Phys. 4, 701–712 (1963)

    MATH  Google Scholar 

  11. Grabiner, D.J.: Brownian motion in a Weyl chamber, non-colliding particles and random matrices. Ann. Inst. H. Poincaré 35, 177–204 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guhr, T.: Transitions toward Quantum Chaos: With Supersymmetry from Poisson to Gauss. Ann. Phys. 250, 145–192 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hejhal, D.: On the Triple Correlation of the Zeros of the Zeta Function. IMRN 1994, pp. 293–302

  14. Johansson, K.: Universality of the Local Spacing Distribution in Certain Ensembles of Hermitian Wigner Matrices. Commun. Math. Phys. 215, 683–705 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Karlin, S., McGregor, G.: Coincidence probabilities. Pacific J. Math. 9, 1141–1164 (1959)

    MATH  Google Scholar 

  16. Katz, N.M., Sarnak, P.: Zeroes of Zeta Functions ans Symmetry. Bull. AMS 36, 1–26 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Keating, J.P., Snaith, N.C.: Random matrix theory and ζ(1/2+it). Commun. Math. Phys. 214, 57–89 (2000)

    Google Scholar 

  18. Lawden, D.: Elliptic functions and applications. Appl. Math. Sci. 80, New York: Springer, 1989

  19. Lenard, A.: States of Classical Statistical Mechanical systems of Infinitely Many Particles II. Characterization of Correlation Measures. Arch. Rat. Mech. Anal. 59, 241–256 (1975)

    Google Scholar 

  20. Montgomery, H.: The Pair Correlation of Zeros of the Zeta Function. Proc. Sym. Pure Math. 24, Providence, RI: AMS, 1973, pp. 181–193

  21. Odlyzko, A.M.: The 1020:th Zero of the Riemann Zeta Function and 70 Million of its Neighbors. Preprint, A.T.T., 1989

  22. Rudnick, Z., Sarnak, P.: Zeros of Principal L-functions and random matrix theory. A celebration of John F. Nash. Duke Math. J. 81, 269–322 (1996)

    MATH  Google Scholar 

  23. Selberg, A.: Contributions to the theory of the Riemann zeta-function. Arch. Math. OG. Naturv. B 48, 89–155 (1946)

    MATH  Google Scholar 

  24. Soshnikov, A.: Determinantal random point fields. Russ. Math. Surv. 55, 923–975 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tracy, C.A., Widom, H.: Correlation Functions, Cluster Functions, and Spacing Distributions for Random Matrices. J. Stat. Phys. 92, 809–835 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Johansson.

Additional information

Communicated by P. Sarnak

Dedicated to Freeman J. Dyson on his 80 th birthday

Supported by the Swedish Science Research Council and the Göran Gustafsson Foundation (KVA).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johansson, K. Determinantal Processes with Number Variance Saturation. Commun. Math. Phys. 252, 111–148 (2004). https://doi.org/10.1007/s00220-004-1186-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-004-1186-4

Keywords

Navigation