Skip to main content
Log in

Formal Symplectic Groupoid

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The multiplicative structure of the trivial symplectic groupoid over ℝd associated to the zero Poisson structure can be expressed in terms of a generating function. We address the problem of deforming such a generating function in the direction of a non-trivial Poisson structure so that the multiplication remains associative. We prove that such a deformation is unique under some reasonable conditions and we give the explicit formula for it. This formula turns out to be the semi-classical approximation of Kontsevich’s deformation formula. For the case of a linear Poisson structure, the deformed generating function reduces exactly to the CBH formula of the associated Lie algebra. The methods used to prove existence are interesting in their own right as they come from an at first sight unrelated domain of mathematics: the Runge–Kutta theory of the numeric integration of ODE’s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Karin Erdmann & Andrzej Skowroński

References

  1. Bates, S., Weinstein, A.: Lectures on the geometry of quantization. Berkeley Mathematics Lecture Notes, 8. Providence, RI: and Berkeley, CA: American Mathematical Society, Berkeley Center for Pure and Applied Mathematics, 1997

  2. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation theory and quantization. I. Deformations of symplectic structures. Ann. Physics 111(1), 61–110 (1978)

    MATH  Google Scholar 

  3. Cattaneo, A.S.: The Lagrangian operad. Unpublished notes, http://www.math.unizh.ch/asc/lagop.pdf

  4. Cattaneo, A.S., Felder, G.: Poisson sigma models and deformation quantization. Euroconference on Brane New World and Noncommutative Geometry (Torino, 2000). Modern Phys. Lett. A 16(4–6), 179–189 (2001)

  5. Cattaneo, A.S., Felder, G.: Poisson sigma models and symplectic groupoids. In: Quantization of singular symplectic quotients, Progr. Math. 198, Basel: Birkhäuser, 2001, pp. 61–93

  6. Coste, A., Dazord, P., Weinstein, A.: Groupoïdes symplectiques. (French) [Symplectic groupoids] Publications du Département de Mathématiques. Nouvelle Série. A, Vol. 2, i–ii, Publ. Dép. Math. Nouvelle Sér. A, 87-2, Lyon: Univ. Claude-Bernard, 1987, pp. 1–62

  7. Crainic, M.: Differentiable and algebroid cohomology, van Est isomorphisms, and characteristic classes. http://arxiv.org/math.DG/0008064, 2000

  8. Crainic, M., Fernandes, R.L.: Integrability of Lie brackets. Ann. of Math. (2) 157(2), 575–620 (2003)

  9. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration. In: Structure-preserving algorithms for ordinary differential equations. Springer Series in Computational Mathematics, 31, Berlin: Springer-Verlag, 2002

  10. Karabegov, K.: On Dequantization of Fedosov’s Deformation Quantization. http://arxiv.org/abs/math.QA/0307381, 2003

  11. Karasëv, M.V.: Analogues of objects of the theory of Lie groups for nonlinear Poisson brackets. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 50(3), 508–538, 638 (1986)

    Google Scholar 

  12. Kathotia, V.: Kontsevich’s universal formula for deformation quantization and the Campbell-Baker-Hausdorff formula. Internat. J. Math. 11(4), 523–551 (2000)

    MATH  Google Scholar 

  13. Kontsevich, M.: Deformation quantization of Poisson manifolds, I. Lett. Math. Phys. 66, 157–216 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Weinstein, A.: Symplectic groupoids and Poisson manifolds. Bull. Am. Math. Soc. (N.S.) 16(1), 101–104 (1987)

    MATH  Google Scholar 

  15. Weinstein, A., Xu, P.: Extensions of symplectic groupoids and quantization. J. Reine Angew. Math. 417, 159–189 (1991)

    MATH  Google Scholar 

  16. Weinstein, A.: Noncommutative geometry and geometric quantization. In: Symplectic geometry and mathematical physics (Aix-en-Provence, 1990), Progr. Math. 99, Boston, MA: Birkhäuser Boston, 1991, pp. 446–461

  17. Weinstein, A.: Tangential deformation quantization and polarized symplectic groupoids. In: Deformation theory and symplectic geometry (Ascona, 1996), Math. Phys. Stud. 20, Dordrecht: Kluwer Acad. Publ. 1997, 301–314

  18. Zakrzewski, S.: Quantum and classical pseudogroups. I. Union pseudogroups and their quantization. Commun. Math. Phys. 134(2), 347–370 (1990)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto S. Cattaneo.

Additional information

Communicated by L. Takhtajan

A.S.C. acknowledges partial support of SNF Grant No. 20-100029/1.

B.D. and G.F. acknowledge partial support of SNF Grant No. 21-65213.01.

Acknowledgement The second author thanks Ernst Hairer for useful discussions, and suggestions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cattaneo, A., Dherin, B. & Felder, G. Formal Symplectic Groupoid. Commun. Math. Phys. 253, 645–674 (2005). https://doi.org/10.1007/s00220-004-1199-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-004-1199-z

Keywords

Navigation