Skip to main content
Log in

Polynuclear Growth on a Flat Substrate and Edge Scaling of GOE Eigenvalues

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the polynuclear growth (PNG) model in 1+1 dimension with flat initial condition and no extra constraints. Through the Robinson-Schensted-Knuth (RSK) construction, one obtains the multilayer PNG model, which consists of a stack of non-intersecting lines, the top one being the PNG height. The statistics of the lines is translation invariant and at a fixed position the lines define a point process. We prove that for large times the edge of this point process, suitably scaled, has a limit. This limit is a Pfaffian point process and identical to the one obtained from the edge scaling of the Gaussian orthogonal ensemble (GOE) of random matrices. Our results give further insight to the universality structure within the KPZ class of 1+1 dimensional growth models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Pocketbook of Mathematical Functions. Thun-Frankfurt am Main: Verlag Harri Deutsch, 1984

  2. Adler, M., van Moerbeke, P.: A PDE for the joint distribution of the Airy process. http:// arxiv.org/abs/math.PR/0302329, 2003, to appear in Ann. Probab.

  3. Baik, J., Rains, E.M.: Limiting distributions for a polynuclear growth model with external sources. J. Stat. Phys. 100, 523–542 (2000)

    Article  MATH  Google Scholar 

  4. Baik, J., Rains, E.M.: Symmetrized random permuations. In: Random Matrix Models and Their Applications, Vol. 40, Cambridge: Cambridge University Press, 2001, pp. 1–19

  5. Dyson, F.J.: A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys. 3, 1191–1198 (1962)

    MATH  Google Scholar 

  6. Forrester, P.J., Nagao, T., Honner, G.: Correlations for the orthogonal-unitary and symplectic-unitary transitions at the hard and soft edges. Nucl Phys. B 553, 601–643 (1999)

    Article  MATH  Google Scholar 

  7. Gohberg, I.C., Krein, M.G.: Introduction to the theory of nonselfadjoint operators. Transl. Math. Monogr., Vol. 35, Providence, RI: Am. Math. Soc., 1969

  8. Greene, C.: An extension of Schensted’s theorem. Adv. Math. 14, 254–265 (1974)

    MATH  Google Scholar 

  9. Johansson, K.: The arctic circle boundary and the Airy process. http://arxiv.org/abs/math.PR/ 0306216, 2003, to appear in Ann. Probab. 33 (2005)

  10. Karlin, S., McGregor, L.: Coincidence probabilities. Pacific J. 9, 1141–1164 (1959)

    MATH  Google Scholar 

  11. Landau, L.J.: Bessel functions: monotonicity and bounds. J. London Math. Soc. 61, 197–215 (2000)

    Article  MATH  Google Scholar 

  12. Prähofer, M., Spohn, H.: Universal distributions for growth processes in 1+1 dimensions and random matrices. Phys. Rev. Lett. 84, 4882–4885 (2000)

    Article  Google Scholar 

  13. Prähofer, M., Spohn, H.: Current fluctuations for the totally asymmetric simple exclusion process. In: V. Sidoravicius, (ed.), In and out of equilibrium, Progress in Probability, Basel-Boston: Birkhäuser, 2002

  14. Prähofer, M., Spohn, H.: Exact scaling function for one-dimensional stationary KPZ growth. J. Stat. Phys. 115, 255–279 (2002)

    Article  Google Scholar 

  15. Prähofer, M., Spohn, H.: Scale invariance of the PNG droplet and the Airy process. J. Stat. Phys. 108, 1071–1106 (2002)

    Article  MathSciNet  Google Scholar 

  16. Rains, E.M.: Correlation functions for symmetrized increasing subsequences. http://arxiv.org/abs/math.CO/0006097, 2000

  17. Roger, L.C.G., Shi, Z.: Interacting Brownian particles and the Wigner law. Probab. Theory Related Fields 95, 555–570 (1993)

    Google Scholar 

  18. Sasamoto, T., Imamura, T.: Fluctuations of a one-dimensional polynuclear growth model in a half space. J. Stat. Phys. 115, 749–803 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Schensted, C.: Longest increasing and decreasing subsequences. Canad. J. Math. 16, 179–191 (1961)

    Google Scholar 

  20. Soshnikov, A.: Determinantal random point fields. Russ. Math. Surveys 55, 923–976 (2000)

    Article  MATH  Google Scholar 

  21. Soshnikov, A.: Janossy densities II. Pfaffian ensembles. J. Stat. Phys. 113, 611–622 (2003)

    MATH  Google Scholar 

  22. Stembridge, J.R.: Nonintersecting paths, Pfaffains, and plane partitions. Adv. Math. 83, 96–131 (1990)

    MATH  Google Scholar 

  23. Tracy, C.A., Widom, H.: On orthogonal and symplectic matrix ensembles. Commun. Math. Phys. 177, 727–754 (1996)

    MATH  Google Scholar 

  24. Tracy, C.A., Widom, H.: Differential equations for Dyson processes. Commun. Math. Phys. 252, 7–41 (2004)

    Google Scholar 

  25. Tracy, C.A., Widom, H.: A system of differential equations for the Airy process. Elect. Commun. Probab. 8, 93–98 (2003)

    Google Scholar 

  26. Tracy, C.A., Widom, H.: Matrix kernels for the Gaussian orthogonal and symplectic ensembles. http://arxiv.org/abs/math-ph/0405035, 2004

  27. Widom, H.: On asymptotic for the Airy process. J. Stat. Phys. 115, 1129–1134 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrik L. Ferrari.

Additional information

Communicated by M. Aizenman

To Freeman Dyson on the occasion of his eightieth birthday

Acknowledgement The author would like to thank Michael Prähofer and Herbert Spohn for discussions about the present work, Tomohiro Sasamoto for explanations on the growth model in half-space, Kurt Johansson for suggesting the problem, Jani Lukkarinen for discussions on technical questions, and József Lőrinczi for reading part of the manuscript. Thanks go also to the referees for critical reading and useful suggestions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrari, P. Polynuclear Growth on a Flat Substrate and Edge Scaling of GOE Eigenvalues. Commun. Math. Phys. 252, 77–109 (2004). https://doi.org/10.1007/s00220-004-1204-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-004-1204-6

Keywords

Navigation