Skip to main content
Log in

Higher-Level Appell Functions, Modular Transformations, and Characters

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study modular transformation properties of a class of indefinite theta series involved in characters of infinite-dimensional Lie superalgebras. The level-ℓ Appell functions satisfy open quasiperiodicity relations with additive theta-function terms emerging in translating by the “period.” Generalizing the well-known interpretation of theta functions as sections of line bundles, the function enters the construction of a section of a rank-(ℓ+1) bundle . We evaluate modular transformations of the functions and construct the action of an SL(2,ℤ) subgroup that leaves the section of constructed from invariant.

Modular transformation properties of are applied to the affine Lie superalgebra at a rational level k>−1 and to the N=2 super-Virasoro algebra, to derive modular transformations of “admissible” characters, which are not periodic under the spectral flow and cannot therefore be rationally expressed through theta functions. This gives an example where constructing a modular group action involves extensions among representations in a nonrational conformal model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Moore, G., Seiberg, N.: Lectures on RCFT. In: Physics, Geometry, and Topology, RU-89-32, Trieste Spring School 1989, London: Plenum, 1990, pp. 263

  2. Verlinde, E.: Fusion rules and modular transformations in 2D conformal field theory. Nucl. Phys. B300, 360 (1988)

  3. Gannon, T.: Modular data: the algebraic combinatorics of conformal field theory. http://arxiv.org/ abs/math.QA/0103044, 2001

  4. Bantay, P.: The kernel of the modular representation and the Galois action in RCFT. Commun. Math. Phys. 233, 423–438 (2003)

    Google Scholar 

  5. Bakalov, B., Kirillov, A.A.: Lectures on Tensor Categories and Modular Functors. Providence, RI: AMS, 2000

  6. Fuchs, J., Runkel, I., Schweigert, C.: TFT construction of RCFT correlators I: Partition functions. Nucl. Phys. B646, 353–497 (2002)

    Google Scholar 

  7. Huang, Y.Z.: Differential equations, duality and modular invariance. http://arxiv.org/ abs/math.QA/0303049, 2003

  8. Kač, V.G.: Infinite Dimensional Lie Algebras. Cambridge: Cambridge University Press, 1990

  9. Göttsche, L., Zagier, D.: Jacobi forms and the structure of Donaldson invariants for 4-manifolds with b+=1. Selecta Math. 4, 69–115 (1998)

    Google Scholar 

  10. Kac, V., Peterson, D.: Infinite-dimensional Lie algebras, theta functions and modular forms. Adv. Math. 53, 125–264 (1984)

    Google Scholar 

  11. Kač, V.G., Wakimoto, M.: Integrable highest weight modules over affine superalgebras and number theory. In: “Lie Theory and Geometry,” by J.L. Brylinski, R. Brylinski, V.G. Guillemin, V.Kac, (eds.), Progress in Math. Phys. 123, Basel-Boston: Birkhäuser, 1994, pp. 415–456

  12. Polishchuk, A.: Indefinite theta series of signature (1,1) from the point of view of homological mirror symmetry. http://arxiv.org/abs/math.AG/0003076, 2000

  13. Semikhatov, A.M., Taormina, A.: Twists and singular vectors in representations. Teor. Mat. Fiz. 128, 474–491 (2001); [Theor. Math. Phys. 128, 1236–1251 (2001)]

    Google Scholar 

  14. Feigin, B.L., Semikhatov, A.M., Sirota, V.A., Tipunin, I.Yu.: Resolutions and characters of irreducible representations of the N=2 superconformal algebra. Nucl. Phys. B536, 617–656 (1999)

    Google Scholar 

  15. Eguchi, T., Taormina, A.: On the unitary representations of N=2 and N=4 superconformal algebras. Phys. Lett. B210, 125 (1988)

    Google Scholar 

  16. Polishchuk, A.: M.P. Appell’s function and vector bundles of rank 2 on elliptic curves. http://arxiv.org/ abs/math.AG/9810084, 1998

  17. Kac, V.G., Wakimoto, M.: Integrable highest weight modules over affine superalgebras and Appell’s function. Commun. Math. Phys. 215, 631–682 (2001)

    Google Scholar 

  18. Barnes, E.W.: Theory of the double gamma function. Phil. Trans. Roy. Soc. A196, 265–388 (1901)

    Google Scholar 

  19. Faddeev, L.D., Kashaev, R.M.: Quantum dilogarithm. Mod. Phys. Lett. A9, 427–434 (1994)

    Google Scholar 

  20. Ponsot, B., Teschner, J.: Clebsch–Gordan and Racah–Wigner coefficients for a continuous series of representations of Commun. Math. Phys. 224, 613–655 (2001)

    Google Scholar 

  21. Faddeev, L.D., Kashaev, R.M., Volkov, A.Yu.: Strongly coupled quantum discrete Liouville theory. I: Algebraic approach and duality. Commun. Math. Phys. 219, 199–219 (2001)

    Google Scholar 

  22. Jimbo, M., Miwa, T.: Quantum KZ equation with |q|=1 and correlation functions of the XXZ model in the gapless regime. J. Phys. A29, 2923–2958 (1996)

    Google Scholar 

  23. Kharchev, S., Lebedev, D., Semenov-Tian-Shansky, M.: Unitary representations of the modular double, and the multiparticle q-deformed Toda chains. Commun. Math. Phys. 225, 573–609 (2002)

    Google Scholar 

  24. Shiota, T.: Characterization of Jacobian varieties in terms of soliton equations. Invent. Mat. 83, 333–382 (1986)

    Google Scholar 

  25. Eholzer, W., Skoruppa, N.-P.: Conformal characters and theta series. Lett. Math. Phys. 35, 197 (1995)

    Google Scholar 

  26. Fuchs, J., Hwang, S., Semikhatov, A.M., Tipunin, I.Yu.: Nonsemisimple fusion algebras and the Verlinde formula. Commun. Math. Phys. 247, 713–742 (2004)

    Google Scholar 

  27. Schwimmer, A., Seiberg, N.: Comments on the N=2, N=3, N=4 superconformal algebras in two-dimensions. Phys. Lett. B184, 191 (1987)

    Google Scholar 

  28. Dong, C.Y., Li, H.S., Mason, G.: Modular invariance of trace functions in orbifold theory. Commun. Math. Phys. 214, 1–56 (2000)

    Google Scholar 

  29. Mumford, D.: Tata Lectures on Theta. Basel-Boston: Birkhäuser, 1983, 1984

  30. Koblitz, N.: Introduction to Elliptic Curves and Modular Forms. Berlin-Heidelberg-New York: Springer-Verlag, 1984

  31. Bowcock, P., Taormina, A.: Representation theory of the affine Lie superalgebra at fractional level. Commun. Math. Phys. 185, 467–493 (1997)

    Google Scholar 

  32. Bowcock, P., Hayes, M.R., Taormina, A.: Characters of admissible representations of the affine superalgebra . Nucl. Phys. B510, 739–763 (1998)

    Google Scholar 

  33. Bowcock, P., Feigin, B.L., Semikhatov, A.M., Taormina, A.: and as vertex operator extensions of dual affine sℓ(2) algebras. Commun. Math. Phys. 214, 495–545 (2000)

    Google Scholar 

  34. Johnstone, G.: Modular transformations and invariants in the context of fractional level affine . Nucl. Phys. 577B, 646–666 (2000)

    Google Scholar 

  35. Semikhatov, A.M.: Verma modules, extremal vectors, and singular vectors on the non-critical N=2 string worldsheet. http://arxiv.org/abs/hep-th/9610084, 1996

  36. Semikhatov, A.M.: Inverting the Hamiltonian reduction in string theory. Talk at the 28th Symposium on the Theory of Elementary Particles, Wendisch-Rietz, September 1994, http://arxiv.org/abs/hep-th/9410109, 1999

  37. Bershadsky, M., Ooguri, H.: Hidden Osp(N,2) symmetries in superconformal field theories. Phys. Lett. B229, 374 (1989)

  38. Bershadsky, M., Lerche, W., Nemeschansky, D., Warner, N.P.: Extended N=2 superconformal structure of gravity and W gravity coupled to matter. Nucl. Phys. B401, 304–347 (1993)

  39. Ito, K., Kanno, H.: Hamiltonian reduction and topological conformal algebra in c≤1 non-critical strings. Mod. Phys. Lett. A9, 1377 (1994)

    Google Scholar 

  40. Zharkov, I.: Theta-functions for indefinite polarizations. http://arxiv.org/abs/math.AG/0011112, 2000

  41. Gurarie, V.: Logarithmic operators in conformal field theory. Nucl. Phys. B410, 535 (1993)

    Google Scholar 

  42. Gaberdiel, M.R., Kausch, H.G.: Indecomposable fusion products. Nucl. Phys. B477, 293 (1996)

    Google Scholar 

  43. Flohr, M.A.I.: Bits and pieces in logarithmic conformal field theory. Int. J. Mod. Phys. A18, 4497–4592 (2003)

    Google Scholar 

  44. Gaberdiel, M.R.: An algebraic approach to logarithmic conformal field theory. Int. J. Mod. Phys. A18, 4593–4638 (2003)

    Google Scholar 

  45. Kač, V.G., Wakimoto, M.: Modular invariant representations of infinite-dimensional Lie algebras and superalgebras. Proc. Natl. Acad. Sci. USA 85, 4956 (1988)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by L. Takhtajan

Acknowledgement We are grateful to B.L. Feigin for interesting discussions, to J. Fuchs for a useful suggestion, and to V.I. Ritus for his help with the small-t asymptotic expansion. AMS acknowledges support from the Royal Society through a grant RCM/ExAgr and the kind hospitality in Durham. AT acknowledges support from a Small Collaborative Grant of the London Mathematical Society that made a trip to Moscow possible, and the warm welcome extended to her during her visit. AMS & IYuT were supported in part by the grant LSS-1578.2003.2, by the Foundation for Support of Russian Science, and by the RFBR Grant 04-01-00303. IYuT was also supported in part by the RFBR Grant 03-01-06135 and the INTAS Grant 00-01-254.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semikhatov, A., Taorimina, A. & Tipunin, I. Higher-Level Appell Functions, Modular Transformations, and Characters. Commun. Math. Phys. 255, 469–512 (2005). https://doi.org/10.1007/s00220-004-1280-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-004-1280-7

Keywords

Navigation