Skip to main content
Log in

Symmetry Classes of Disordered Fermions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Building upon Dyson’s fundamental 1962 article known in random-matrix theory as the threefold way, we classify disordered fermion systems with quadratic Hamiltonians by their unitary and antiunitary symmetries. Important physical examples are afforded by noninteracting quasiparticles in disordered metals and superconductors, and by relativistic fermions in random gauge field backgrounds.

The primary data of the classification are a Nambu space of fermionic field operators which carry a representation of some symmetry group. Our approach is to eliminate all of the unitary symmetries from the picture by transferring to an irreducible block of equivariant homomorphisms. After reduction, the block data specifying a linear space of symmetry-compatible Hamiltonians consist of a basic vector space V, a space of endomorphisms in End(), a bilinear form on which is either symmetric or alternating, and one or two antiunitary symmetries that may mix V with V*. Every such set of block data is shown to determine an irreducible classical compact symmetric space. Conversely, every irreducible classical compact symmetric space occurs in this way.

This proves the correspondence between symmetry classes and symmetric spaces conjectured some time ago.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Altland, A., Zirnbauer, M.R.: Nonstandard symmetry classes in mesoscopic normal-/superconducting hybrid systems. Phys. Rev. B 55, 1142–1161 (1997)

    Article  CAS  Google Scholar 

  2. Altland, A., Simons, B.D., Zirnbauer, M.R.: Theories of low-energy quasiparticle states in disordered d-wave superconductors. Phys. Rep. 359, 283-354 (2002)

    Article  CAS  Google Scholar 

  3. Arnold, V.I.: Mathematical methods of classical mechanics. New York, Heidelberg, Berlin: Springer-Verlag, 1978

  4. Bergmann, G.: Weak localization in thin films – a time-of-flight experiment with conduction electrons. Phys. Rep. 107, 1–58 (1984)

    Article  CAS  Google Scholar 

  5. Berline, N., Getzler, E., Vergne, M.: Heat kernels and Dirac operators. Berlin, Heidelberg, New York: Springer-Verlag, 1992

  6. Caselle, M., Magnea, U.: Random-matrix theory and symmetric spaces. Phys. Rep. 394, 41–156 (2004)

    Article  CAS  Google Scholar 

  7. Dyson, F.J.: The threefold way: algebraic structure of symmetry groups and ensembles in quantum mechanics. J. Math. Phys. 3, 1199–1215 (1962)

    Article  Google Scholar 

  8. Eremin, I., Manske, D., Ovchinnikov, S.G., Annett, J.F.: Unconventional superconductivity and magnetism in Sr2 Ru O4 and related materials. Ann. Physik 13, 149–174 (2004)

    Article  CAS  Google Scholar 

  9. Gruzberg, I.A., Ludwig, A.W.W., Read, N.: Exact exponents for the spin quantum Hall transition. Phys. Rev. Lett. 82, 4524–4527 (1999)

    Article  CAS  Google Scholar 

  10. Halasz, M.A., Verbaarschot, J.J.M.: Effective Lagrangians and chiral random-matrix theory. Phys. Rev. D 51, 2563–2573 (1995)

    Article  Google Scholar 

  11. Helgason, S.: Differential geometry, Lie groups and symmetric spaces. New York: Academic Press, 1978

  12. Katz, N.M., Sarnak, P.: Random matrices, Frobenius eigenvalues, and monodromy. Providence, R.I.: American Mathematical Society, 1999

  13. Mackenzie, A.P., Maeno, Y.: The superconductivity of Sr2 Ru O4 and the physics of spin-triplet pairing. Rev. Mod. Phys. 75, 657–712 (2003)

    CAS  Google Scholar 

  14. Read, N., Green, D.: Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B 61, 10267–10297 (2000)

    Article  CAS  Google Scholar 

  15. Senthil, T., Fisher, M.P.A.: Quasiparticle localization in superconductors with spin-orbit scattering. Phys. Rev. B 61, 9690–9698 (2000)

    Article  CAS  Google Scholar 

  16. Senthil, T., Marston, J.B., Fisher, M.P.A.: Spin quantum Hall effect in unconventional superconductors. Phys. Rev. B 60, 4245–4254 (1999)

    Article  CAS  Google Scholar 

  17. Senthil, T., Fisher, M.P.A., Balents, L., Nayak, C.: Quasiparticle transport and localization in high-T c superconductors. Phys. Rev. Lett. 81, 4704–4707 (1998)

    Article  CAS  Google Scholar 

  18. Stewart, G.S.: Heavy-fermion systems. Rev. Mod. Phys. 56, 755–787 (1984)

    Article  CAS  Google Scholar 

  19. Tsuei, C.C., Kirtley, J.R.: Pairing symmetry in the cuprate superconductors. Rev. Mod. Phys. 72, 969–1016 (2000)

    Article  CAS  Google Scholar 

  20. Verbaarschot, J.J.M.: The spectrum of the QCD Dirac operator and chiral random-matrix theory: the threefold way. Phys. Rev. Lett. 72, 2531–2533 (1994)

    Article  CAS  PubMed  Google Scholar 

  21. Verbaarschot, J.J.M.: The spectrum of the Dirac operator near zero virtuality for N c = 2. Nucl. Phys. B 426, 559–574 (1994)

    Article  CAS  Google Scholar 

  22. Verbaarschot, J.J.M., Zahed, I.: Spectral density of the QCD Dirac operator near zero virtuality. Phys. Rev. Lett. 70, 3852–3855 (1993)

    Article  CAS  PubMed  Google Scholar 

  23. Vollhardt, D., Wölfle, P.: The superfluid phases of Helium 3. London: Taylor & Francis, 1990

  24. Zirnbauer, M.R.: Riemannian symmetric superspaces and their origin in random-matrix theory. J. Math. Phys. 37, 4986–5018 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Heinzner.

Additional information

Communicated by P. Sarnak

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinzner, P., Huckleberry, A. & Zirnbauer, M. Symmetry Classes of Disordered Fermions. Commun. Math. Phys. 257, 725–771 (2005). https://doi.org/10.1007/s00220-005-1330-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-005-1330-9

Keywords

Navigation