Skip to main content
Log in

Setting the Quantum Integrand of M-Theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In anomaly-free quantum field theories the integrand in the bosonic functional integral—the exponential of the effective action after integrating out fermions—is often defined only up to a phase without an additional choice. We term this choice ``setting the quantum integrand''. In the low-energy approximation to M-theory the E 8-model for the C-field allows us to set the quantum integrand using geometric index theory. We derive mathematical results of independent interest about pfaffians of Dirac operators in 8k+3 dimensions, both on closed manifolds and manifolds with boundary. These theorems are used to set the quantum integrand of M-theory for closed manifolds and for compact manifolds with either temporal (global) or spatial (local) boundary conditions. In particular, we show that M-theory makes sense on arbitrary 11-manifolds with spatial boundary, generalizing the construction of heterotic M-theory on cylinders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez-Gaumé, L., Della Pietra, S., Moore, G.: Anomalies and odd dimensions. Ann Phys 163, 288 (1985)

    Article  MATH  ADS  Google Scholar 

  2. Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian geometry. I Math. Proc. Cambridge Philos. Soc. 77, 43–69 (1975) II Math. Proc. Cambridge Philos. Soc. 78, 405–432 (1975) III Math. Proc. Cambridge Philos. Soc. 79, 71–9 (1976)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Atiyah, M.F., Singer, I.M.: Index theory for skew-adjoint Fredholm operators. Publ. Math. Inst. Hautes Etudes Sci. (Paris) 37, 5–26 (1969)

    MATH  MathSciNet  Google Scholar 

  4. Bilal, A., Metzger, S.: Anomaly cancellation in M-theory: a critical review. Nucl.Phys. B 675, 416–446 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Bismut, J.M., Freed, D.S.: The analysis of elliptic families I: Metrics and connections on determinant bundles. Commun. Math. Phys. 106, 159–176 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Brylinski, J.-L., Mclaughlin, D.: The geometry of degree four characteristic classes and of line bundles on loop space. Duke Math. J. 75, 603–638 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Carey, A.L., Murray, M.K.: Faddeev's anomaly and bundle gerbes. Lett. Math. Phys. 3 29–36 (1996)

    Google Scholar 

  8. Carey, A.L., Mickelsson, J., Murray, M.K.: Bundle gerbes applied to quantum field theory. Rev. Math. Phys. 12, 65–90 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dai, X., Freed, D.S.: η-invariants and determinant lines. J. Math. Phys, 5155–5194 (1994); Erratum, ibid 42, 2343–2344 (2001)

    Google Scholar 

  10. Deligne, P, Freed, D.S.: Classical field theory In: Deligne, P., Etingof, P., Freed, D.S., Jeffrey, L.C., Kazhdan, D., Morgan, J.W., Morrison, D.R., Witten, E. (eds.,) Quantum Fields and Strings: A Course for Mathematicians, 2 volumes. Providence, RI: American Mathematical Society, pp. 137–225 (1999)

  11. Diaconescu, E., Freed, D.S., Moore, G.: The M-theory 3-form and E8 gauge theory. http://arxiv.org/list/th/0312069, 2003

  12. Diaconescu, D.E., Moore, G.W., Witten, E.: E(8) gauge theory, and a derivation of K-theory from M-theory. Adv. Theor. Math. Phys. 6, 1031 (2003)

    MathSciNet  Google Scholar 

  13. Faddeev, L.D.: Operator anomaly for the gauss law. Phys.Lett.B 145, 81–84 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  14. Faddeev, L.D., Shatashvili, S.L.: Algebraic and Hamiltonian methods in the theory of nonabelian anomalies. Theor. Math. Phys. 60, 770–778 (1985) Teor. Mat. Fiz. 60, 206–217 (1984)

    Article  Google Scholar 

  15. Fradkin, E.S., Tseytlin, A.A.: Quantum properties of higher dimensional and dimensionally reduced supersymmetric theories. Nucl. Phys. B 227, 252 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  16. Freed, D.S.: On determinant line bundles Mathematical Aspects of String Theory. In: Yau, S.T.(ed.,) Singapore: World Scientific Publishing, pp. 189–238 (1987)

  17. Freed, D.S.: Dirac charge quantization and generalized differential cohomology. Surv. Differ. Geom., VII (2000), Cambridge, MA: International Press, pp. 129–194 (2002)

  18. Freed, D.S.: K-Theory in Quantum Field Theory info. In: Freed, D.S., Jenquin, J.J. (eds.,) Current developments in mathematics, 2001, Somerville, MA: Int. Press, pp. 41–87 (2002)

  19. Freed, D.S., Hopkins, M.J.: In preparation

  20. Freed, D.S., Quinn, F.: Chern-Simons theory with finite gauge group. Commun. Math. Phys. 156, 435–472 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Hopkins, M.J., Singer, I.M.: Quadratic functions in geometry, topology, and M-theory. http://arxiv.org/list/math.AT/0211216, 2002

  22. Horava, P., Witten, E.: Heterotic and Type I string dynamics from eleven dimensions. Nucl. Phys. B 460, 506–524 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Horava, P., Witten, E.: Eleven-dimensional supergravity on a manifold with boundary. Nucl. Phys. B 475, 94–114 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Jenquin, J.J.: Spin TQFTs and Chern-Simons gauge theory. Ph. D. thesis, 2004

  25. Kallosh, R.: Modified Feynman rules in supergravity. Nucl. Phys. B 141 141 (1978)

    Google Scholar 

  26. Mickelsson, J., Scott, S.: Functorial QFT, gauge anomalies and the Dirac determinant bundle. Commun. Math. Phys. 219, 567–605 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Moss, I.G.: Boundary terms for supergravity and heterotic M-theory. http://arxiv.org/list/hep-th/0403106, 2004

  28. Nielsen, N.: Ghost counting in supergravity. Nucl. Phys. B 140, 499 (1978)

    Article  ADS  Google Scholar 

  29. Powell, J.: Two theorems on the mapping class group of a surface. Proc. Amer. Math. Soc. 68, 347–350 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  30. Quillen, Q.: Superconnections and the Chern character. Topology 24, 89–95 (1985)

    MATH  MathSciNet  Google Scholar 

  31. Quinn, F.: Lectures on axiomatic topological quantum field theory. In: Geometry and quantum field theory (Park City, UT, 1991), IAS/Park City Math. Ser., 1, Providence, RI: Amer. Math. Soc., 1995, pp. 323–453

  32. Redlich, N.: Gauge noninvariance and parity nonconservation of three-dimensional fermions Phys. Rev. Lett. 52, 18 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  33. Redlich, N.: Parity violation and gauge noninvariance of the effective gauge field action in three-dimensions. Phys. Rev. D 29, 2366 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  34. Scholl, M.: Ph. D. thesis, in preparation

  35. Scott, S.G., Wojciechowski, K.P.: The ζ-determinant and Quillen determinant for a Dirac operator on a manifold with boundary. Geom. Funct. Anal. 10, 1202–1236 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  36. Segal, G.: The definition of conformal field theory. In: Tillmann, U. (ed.,) Topology, Geometry and Quantum Field Theory (Proceedings of the 2002 Oxford Symposium in Honour of the 60th Birthday of Graeme Segal). Cambridge: Cambridge University Press, 2004, pp. 421–577

  37. Segal, G.: Topological field theory (``Stanford Notes''), http://www.cgtp.duke.edu/ITP99/segal/

  38. Segal, G.: Fadeev's anomaly in Gauss's law. Oxford University Preprint

  39. Singer, I.M.: Families of Dirac operators with applications to physics. In: The mathematical heritage of Élie Cartan (Lyon, 1984), Astérisque, pp. 323–340 (1985)

  40. van Nieuwenhuizen, P.: Supergravity. Phys. Rep. 68, 189 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  41. Witten, E.: On flux quantization in M-theory and the effective action. J. Geom. Phys. 22, 1–13 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  42. Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351–399 (1989)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  43. Wojciechowski, K.P.: The η-determinant and the additivity of the η-invariant on the smooth, self-adjoint Grassmannian. Commun. Math. Phys. 201, 423–444 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel S. Freed.

Additional information

Communicated by M.R. Douglas

The work of D.F. is supported in part by NSF grant DMS-0305505. The work of G.M. is supported in part by DOE grant DE-FG02-96ER40949

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freed, D., Moore, G. Setting the Quantum Integrand of M-Theory. Commun. Math. Phys. 263, 89–132 (2006). https://doi.org/10.1007/s00220-005-1482-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-005-1482-7

Keywords

Navigation