Skip to main content
Log in

Lower Bounds for an Integral Involving Fractional Laplacians and the Generalized Navier-Stokes Equations in Besov Spaces

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

When estimating solutions of dissipative partial differential equations in L p-related spaces, we often need lower bounds for an integral involving the dissipative term. If the dissipative term is given by the usual Laplacian −Δ, lower bounds can be derived through integration by parts and embedding inequalities. However, when the Laplacian is replaced by the fractional Laplacian (−Δ)α, the approach of integration by parts no longer applies. In this paper, we obtain lower bounds for the integral involving (−Δ)α by combining pointwise inequalities for (−Δ)α with Bernstein's inequalities for fractional derivatives. As an application of these lower bounds, we establish the existence and uniqueness of solutions to the generalized Navier-Stokes equations in Besov spaces. The generalized Navier-Stokes equations are the equations resulting from replacing −Δ in the Navier-Stokes equations by (−Δ)α.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beirão da Veiga, H.: Existence and asymptotic behavior for strong solutions of the Navier-Stokes equations in the whole space. Indiana Univ. Math. J. 36, 149–166 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beirão da Veiga, H., Secchi, P.: L p-stability for the strong solutions of the Navier-Stokes equations in the whole space. Arch. Rat. Mech. Anal. 98, 65–69 (1987)

    Article  MATH  Google Scholar 

  3. Bergh, J., Löfström, J.: Interpolation Spaces, An Introduction. Berlin-Heidelberg-New York: Springer-Verlag, 1976

  4. Chae, D., Lee, J.: On the global well-posedness and stability of the Navier-Stokes and the related equations. In: Contributions to current challenges in mathematical fluid mechanics, Adv. Math. Fluid Mech., Basel: Birkhäuser, 2004, pp. 31–51

  5. Chemin, J.-Y.: Théorèmes d'unicité pour le système de Navier-Stokes tridimensionnel. J. Anal. Math. 77, 27–50 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Chemin, J.-Y., Lerner, N.: Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes. J. Differ. Eq. 121, 314–328 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Constantin, P.: Euler equations, Navier-Stokes equations and turbulence. In: M. Cannone, T. Miyakawa, eds., Mathematical foundation of turbulent viscous flows. CIME Summer School, Martina Francs, Italy 2003. Berlin-Heidelberg-New York: Springer, to appear

  8. Constantin, P., Córdoba, D., Wu, J.: On the critical dissipative quasi-geostrophic equation. Indiana Univ. Math. J. 50, 97–107 (2001)

    MATH  MathSciNet  Google Scholar 

  9. Constantin, P., Wu, J.: Behavior of solutions of 2D quasi-geostrophic equations. SIAM J. Math. Anal. 30, 937–948 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Córdoba, A., Córdoba, D.: A pointwise estimate for fractionary derivatives with applications to partial differential equations. Proc. Natl. Acad. Sci. USA 100, 15316–15317 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Córdoba, A., Córdoba, D.: A maximum principle applied to quasi-geostrophic equations. Commun. Math. Phys. 249, 511–528 (2004)

    Article  ADS  MATH  Google Scholar 

  12. Danchin, R.: Poches de tourbillon visqueuses. J. Math. Pures Appl. 76(9), 609–647 (1997)

    MathSciNet  Google Scholar 

  13. Gallagher, I., Iftimie, D., Planchon, F.: Asymptotics and stability for global solutions to the Navier-Stokes equations. Ann. Inst. Fourier (Grenoble) 53, 1387–1424 (2003)

    MATH  MathSciNet  Google Scholar 

  14. Ju, N.: The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations. Commun. Math. Phys. 255, 161–181 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. (French) Paris: Dunod / Gauthier-Villars, 1969

  16. Planchon, F.: Sur un inégalité de type Poincaré. C. R. Acad. Sci. Paris Sér. I Math. 330, 21–23 (2000)

    MATH  MathSciNet  ADS  Google Scholar 

  17. Wu, J.: Generalized MHD equations. J. Differ. Eq. 195, 284–312 (2003)

    Article  MATH  Google Scholar 

  18. Wu, J.: The generalized incompressible Navier-Stokes equations in Besov spaces. Dyn. Partial Differ. Eq. 1, 381–400 (2004)

    MATH  Google Scholar 

  19. Wu, J.: Global solutions of the 2D dissipative quasi-geostrophic equation in Besov spaces. SIAM J. Math. Anal. 36, 1014–1030 (2004/05)

    Google Scholar 

  20. Yuan, J.-M., Wu, J.: The complex KdV equation with or without dissipation. Discrete Contin. Dyn. Syst. Ser. B 5, 489–512 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiahong Wu.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J. Lower Bounds for an Integral Involving Fractional Laplacians and the Generalized Navier-Stokes Equations in Besov Spaces. Commun. Math. Phys. 263, 803–831 (2006). https://doi.org/10.1007/s00220-005-1483-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-005-1483-6

Keywords

Navigation