Skip to main content
Log in

A Generalization of Hawking’s Black Hole Topology Theorem to Higher Dimensions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Hawking’s theorem on the topology of black holes asserts that cross sections of the event horizon in 4-dimensional asymptotically flat stationary black hole spacetimes obeying the dominant energy condition are topologically 2-spheres. This conclusion extends to outer apparent horizons in spacetimes that are not necessarily stationary. In this paper we obtain a natural generalization of Hawking’s results to higher dimensions by showing that cross sections of the event horizon (in the stationary case) and outer apparent horizons (in the general case) are of positive Yamabe type, i.e., admit metrics of positive scalar curvature. This implies many well-known restrictions on the topology, and is consistent with recent examples of five dimensional stationary black hole spacetimes with horizon topology S 2 × S 1. The proof is inspired by previous work of Schoen and Yau on the existence of solutions to the Jang equation (but does not make direct use of that equation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ashtekar A., Galloway G.J. (2005) Uniqueness theorems for dynamical horizons. Adv. Theor. Math. Phys. 8, 1–30

    MathSciNet  Google Scholar 

  2. Ashtekar A., Krishnan B. (2003) Dynamical horizons and their properties. Phys. Rev. D 68, 261101

    Article  MathSciNet  Google Scholar 

  3. Andersson L., Mars M., Simon W. (2005) Local existence of dynamical and trapping horizons. Phys. Rev. Lett. 95, 111102

    Article  ADS  Google Scholar 

  4. Cai, M. Volume minimizing hypersurfaces in manifolds of nonnegative scalar curvature. In: Minimal Surfaces, Geometric Analysis, and Symplectic Geometry, Advanced Studies in Pure Mathematics, eds. Fukaya, K., Nishikawa, S., Spruck, J., 34, 1–7 (2002)

  5. Cai M., Galloway G.J. (2000) Rigidity of area minimzing tori in 3-manifolds of nonnegative scalar curvature. Commun. Anal. Geom. 8, 565–573

    MATH  MathSciNet  Google Scholar 

  6. Cai M., Galloway G.J. (2001) On the topology and area of higher dimensional black holes. Class. Quant. Grav. 18, 2707–2718

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Emparan R., Reall H.S. (2002) A rotating black ring in five dimensions. Phys. Rev. Lett. 88, 101101

    Article  ADS  MathSciNet  Google Scholar 

  8. Gibbons G.W. (1972) The time symmetric initial value problem for black holes. Commun. Math. Phys. 27, 87–102

    Article  ADS  MathSciNet  Google Scholar 

  9. Gromov M., Lawson B. (1980) Spin and scalar curvature in the presence of the fundamental group. Ann. of Math. 111, 209–230

    Article  MathSciNet  Google Scholar 

  10. Gromov M., Lawson B. (1983) Positive scalar curvature and the Dirac operator on complete Riemannian manifolds. Publ. Math. IHES 58, 83–196

    MATH  MathSciNet  Google Scholar 

  11. Hawking S.W. (1972) Black holes in general relativity. Commun. Math. Phys. 25, 152–166

    Article  ADS  MathSciNet  Google Scholar 

  12. Hawking, S.W. The event horizon. In ‘Black Holes, Les Houches lectures’ (1972), edited by C. DeWitt, B. S. DeWitt Amsterdam: North Holland, 1972

  13. Hawking S.W., Ellis G.F.R. (1973) The large scale structure of space-time. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  14. Helfgott, C., OZ, Y., Yanay, Y. On the topology of black hole event horizons in higher dimensions. JHEPO2 (2006) 024

  15. Kazdan J., Warner F. (1975) Prescribing curvatures. Proc. Symp. in Pure Math. 27, 309–319

    MathSciNet  Google Scholar 

  16. Lichnerowicz A. (1963) Spineurs harmoniques. Cr. Acd. Sci. Paris, Sér. A-B 257, 7–9

    MATH  MathSciNet  Google Scholar 

  17. Schoen R., Yau S.T. (1979) 1 Existence of incompressible minimal surfaces and the topology of three dimensional manifolds of non-negative scalar curvature. Ann. of Math. 110, 127–142

    Article  MathSciNet  Google Scholar 

  18. Schoen R., Yau S.T. (1979) On the structure of manifolds with positive scalar curvature. Manuscripta Math. 28, 159–183

    Article  MATH  MathSciNet  Google Scholar 

  19. Schoen R., Yau S.T. (1981) Proof of the positive of mass theorem. II. Commun. Math. Phys., 79, 231–260

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory J. Galloway.

Additional information

Communicated by G.W. Gibbons

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galloway, G.J., Schoen, R. A Generalization of Hawking’s Black Hole Topology Theorem to Higher Dimensions. Commun. Math. Phys. 266, 571–576 (2006). https://doi.org/10.1007/s00220-006-0019-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0019-z

Keywords

Navigation