Skip to main content
Log in

Infinite Canonical Super-Brownian Motion and Scaling Limits

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct a measure valued Markov process which we call infinite canonical super-Brownian motion, and which corresponds to the canonical measure of super-Brownian motion conditioned on non-extinction. Infinite canonical super-Brownian motion is a natural candidate for the scaling limit of various random branching objects on \(\mathbb{Z}^d\) when these objects are critical, mean-field and infinite. We prove that ICSBM is the scaling limit of the spread-out oriented percolation incipient infinite cluster above 4 dimensions and of incipient infinite branching random walk in any dimension. We conjecture that it also arises as the scaling limit in various other models above the upper-critical dimension, such as the incipient infinite lattice tree above 8 dimensions, the incipient infinite cluster for unoriented percolation above 6 dimensions, uniform spanning trees above 4 dimensions, and invasion percolation above 6 dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aizenman M. (1997). On the number of incipient spanning clusters. Nucl. Phys. B [FS] 485:551–582

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Aldous D. (1991). The continuum random tree I. Ann. Probab. 19:1–28

    Article  MathSciNet  MATH  Google Scholar 

  3. Aldous D. (1991). The continuum random tree II An overview. London Math. Soc. Lecture Note Ser. 167:23–70

    MathSciNet  Google Scholar 

  4. Aldous D. (1993). The continuum random tree III. Ann. Probab. 21:248–289

    Article  MathSciNet  MATH  Google Scholar 

  5. Benjamini I., Lyons R., Peres Y., Schramm O. (2001). Uniform spanning forests. Ann. Probab. 29:1–65

    MathSciNet  MATH  Google Scholar 

  6. Benjamini, I., Kesten, H., Peres, Y., Schramm, O. (2004). Geometry of the Uniform Spanning Forest: Transitions in Dimensions 4, 8, 12, ... . Ann. Math. 160, 465–491

  7. Bezuidenhout C., Grimmett G. (1990). The critical contact process dies out. Ann. Probab. 18:1462–1482

    Article  MathSciNet  MATH  Google Scholar 

  8. Bezuidenhout C., Grimmett G. (1991). Exponential decay for subcritical contact and percolation processes. Ann. Probab. 19:984–1009

    Article  MathSciNet  MATH  Google Scholar 

  9. Billingsley P. (1995). Probability and Measure. John Wiley and Sons, New York, 3rd edition

    MATH  Google Scholar 

  10. Borgs C., Chayes J., van der Hofstad R., Slade G. (1999). Mean-field lattice trees. Ann. Combinatorics 3:205–221

    Article  MATH  Google Scholar 

  11. Chayes J.T., Chayes L., Newman C.M. (1985). Stochastic geometry of invasion percolation. Commun. Math. Phys.101:383–407

    Article  ADS  MathSciNet  Google Scholar 

  12. Cox J.T., Durrett R., Perkins E.A. (2000). Rescaled voter models converge to super-Brownian motion. Ann. Probab. 28:185–234

    Article  MathSciNet  MATH  Google Scholar 

  13. Cox J.T., Durrett R., Perkins E.A. (1999). Rescaled particle systems converging to super-Brownian motion. In: Bramson M., Durrett R. (eds) Perplexing Problems in Probability: Festschrift in Honor of Harry Kesten. Birkhäuser, Basel

    Google Scholar 

  14. Dawson, D.A.: Measure-valued Markov processes. In: Ecole d’Eté de Probabilités de Saint–Flour 1991, Lecture Notes in Mathematics # 1541, Berlin, Springer, 1993

  15. Dawson D.A., Iscoe I., Perkins E.A. (1989). Super-Brownian motion: path properties and hitting probabilities. Probab. Th. Rel. Fields 83:135–205

    Article  MathSciNet  MATH  Google Scholar 

  16. Dawson, D.A., Perkins, E.A.: Measure-valued processes and renormalization of branching particle systems. In: Stochastic partial differential equations: six perspectives, Math. Surveys Monogr. 64, Providence, RI: Amer. Math. Soc., 1999 pp. 45–106

  17. Derbez E., Slade G. (1997). Lattice trees and super-Brownian motion. Canad. Math. Bull. 40:19–38

    MathSciNet  MATH  Google Scholar 

  18. Derbez E., Slade G. (1998). The scaling limit of lattice trees in high dimensions. Commun. Math. Phys. 193:69–104

    Article  ADS  MathSciNet  Google Scholar 

  19. Durrett R., Perkins E.A. (1999). Rescaled contact processes converge to super-Brownian motion in two or more dimensions. Probab. Th. Rel. Fields 114:309–399

    Article  MathSciNet  MATH  Google Scholar 

  20. Dynkin E.B. (1988). Representation for functionals of superprocesses by multiple stochastic integrals, with applications to self-intersection local times. Astérisque 157–158:147–171

    MathSciNet  Google Scholar 

  21. Dynkin E.B. (1994). An Introduction to Branching Measure-Valued Processes. Amer. Math. Soc., Providence, RI

    MATH  Google Scholar 

  22. El Karoui N., Roelly S. (1991). Martingale properties, explosion and Levy-Khinchin representation of a class of measure-valued branching processes. (French) Stochastic Process. Appl. 38(2):239–266

    Article  MathSciNet  MATH  Google Scholar 

  23. Etheridge A.M. (2000). An Introduction to Superprocesses. Amer. Math. Soc., Providence RI

    MATH  Google Scholar 

  24. Evans, S.N.: Two representations of conditioned superprocesses. Proc. Roy. Soc. Edin. Ser. A 123, part 5, 959–971 (1993)

  25. Evans S.N., Perkins E. (1990). Measure-valued Markov branching processes conditioned on nonextinction. Israel J. Math. 71(3):329–337

    Article  MathSciNet  MATH  Google Scholar 

  26. Geiger J. (1999). Elementary new proofs of classical limit theorems for Galton-Watson processes. J. Appl. Probab. 36 (2):301–309

    Article  MathSciNet  MATH  Google Scholar 

  27. Grimmett G. (1999). Percolation 2nd edition. Springer, Berlin

    MATH  Google Scholar 

  28. Grimmett G., Hiemer P. (2002). Directed percolation and random walk. In: Sidoravicius V. (eds) In and Out of Equilibrium. Birkhäuser, Boston, pp. 273–297

    Google Scholar 

  29. Haase H. (1994). On the incipient cluster of the binary tree. Arch. Math. (Basel) 63(5):465–471

    MathSciNet  MATH  Google Scholar 

  30. Hara T., van der Hofstad R., Slade G. (2003). Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models. Ann. Probab. 31:349–408

    Article  MathSciNet  MATH  Google Scholar 

  31. Hara T., Slade G. (2000). The scaling limit of the incipient infinite cluster in high-dimensional percolation. I. Critical exponents. J. Statist. Phys. 99:1075–1168

    Article  MathSciNet  MATH  Google Scholar 

  32. Hara T., Slade G. (2000). The scaling limit of the incipient infinite cluster in high-dimensional percolation. II. Integrated super-Brownian excursion. J. Math. Phys. 41:1244–1293

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. van der Hofstad, R.: Spread-out oriented percolation and related models above the upper critical dimension: Induction and Super-Processes. Ensaios Matemáticos 9 (2005) http://www.sbm.org.br/ periodicos/em/vol9/em_9_hofstad.pdf, 2005

  34. van der Hofstad R., den Hollander F., Slade G. (1998). A new inductive approach to the lace expansion for self-avoiding walks. Probab. Th. Rel. Fields 111:253–286

    Article  MATH  Google Scholar 

  35. van der Hofstad R., den Hollander F., Slade G. (2002). Construction of the incipient infinite cluster for spread-out oriented percolation above 4+1 dimensions. Commun. Math. Phys. 231: 435–461

    Article  ADS  MATH  Google Scholar 

  36. van der Hofstad, R., den Hollander, F., Slade, G.: The survival probability for critical spread-out oriented percolation above 4+1 dimensions. I: Induction. Preprint (2005)

  37. van der Hofstad, R., den Hollander, F., Slade, G.: The survival probability for critical spread-out oriented percolation above 4+1 dimensions. II: Expansion. Preprint (2005)

  38. van der Hofstad R., Járai A. (2004). The incipient infinite cluster for high-dimensional unoriented percolation. J. Stat. Phys. 114:625–663

    Article  ADS  MATH  Google Scholar 

  39. van der Hofstad R., Sakai A. (2004). Gaussian scaling for the critical spread-out contact process above the upper critical dimension. Electr. J. Probab. 9:710–769

    Google Scholar 

  40. van der Hofstad, R. Sakai, A.: Convergence of the critical finite-range contact process to super-Brownian motion above the upper critical dimension. In preparation

  41. van der Hofstad R., Slade G. (2002). A generalised inductive approach to the lace expansion. Probab. Th. Rel. Fields 122:389–430

    Article  MATH  Google Scholar 

  42. van der Hofstad R., Slade G. (2003). Convergence of critical oriented percolation to super-Brownian motion above 4+1 dimensions. Ann. Inst. Henri Poincaré 39:413–485

    Article  MATH  Google Scholar 

  43. Holmes, M.: Convergence of lattice trees to super-Brownian motion above the critical dimension. PhD thesis, University of British Columbia, 2005

  44. Járai Jr A. (2003). Incipient infinite percolation clusters in 2d. Ann. Probab. 31:444–485

    Article  MathSciNet  MATH  Google Scholar 

  45. Járai Jr A. (2003). Invasion percolation and the incipient infinite cluster in 2d. Commun. Math. Phys. 236:311–334

    Article  ADS  MATH  Google Scholar 

  46. Kallenberg O. (1983). Random measures Third edition. Akademie-Verlag, Academic Press Inc., Berglin

    MATH  Google Scholar 

  47. Kesten H. (1986). The incipient infinite cluster in two-dimensional percolation. Probab. Th. Rel. Fields 73:369–394

    Article  MathSciNet  MATH  Google Scholar 

  48. Kesten H. (1986). Subdiffusive behavior of random walk on a random cluster. Ann. Inst. Henri Poincaré 22:425–487

    MathSciNet  MATH  Google Scholar 

  49. Kesten H. (1995). Branching random walk with a critical branching part. J. Theoret. Probab. 8:921–962

    Article  MathSciNet  MATH  Google Scholar 

  50. Kolmogorov A.N. (1938). Zur Lösung einer biologoschen Aufgabe. Izv. NII Mathem. Mekh. Tomskogo Univ. 2:1–6

    Google Scholar 

  51. Lamperti J., Ney P. (1968). Conditioned branching processes and their limiting diffusions. Theory Probab. Appl. 13:126–137

    Article  MathSciNet  Google Scholar 

  52. Lawler G.F. (1991). Intersections of random walks. Birkhäuser, Basel

    Google Scholar 

  53. Le Gall J.-F. (1999). Spatial Branching Processes, Random Snakes, and Partial Differential Equations. Birkhäuser, Basel

    MATH  Google Scholar 

  54. Li Z.H., Shiga T. (1995). Measure-valued branching diffusions: immigrations, excursions and limit theorems. J. Math. Kyoto Univ. 35(2):233–274

    MathSciNet  MATH  Google Scholar 

  55. Liggett T. (1999). Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, Berlin

    MATH  Google Scholar 

  56. Lyons R., Pemantle R., Peres Y. (1995). Conceptual proofs of L log L criteria for mean behaviour of branching processes. Ann. Probab. 25:1125–1138

    Article  MathSciNet  Google Scholar 

  57. Lyons R. (1998). A bird’s-eye view of uniform spanning trees and forests. DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 41:135–162

    MathSciNet  Google Scholar 

  58. Newman, C.M., Stein D.L. (1996). Ground-state structure in a highly disordered spin-glass model. J. Statist. Phys. 82:1113–1132

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Nguyen B.G., Yang W-S. (1993). Triangle condition for oriented percolation in high dimensions. Ann. Probab. 21:1809–1844

    Article  MathSciNet  MATH  Google Scholar 

  60. Nguyen B.G., Yang W-S. (1995). Gaussian limit for critical oriented percolation in high dimensions. J. Stat. Phys. 78:841–876

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Peres, Y., Revelle, D.: Scaling limits of the uniform spanning tree and loop-erased random walk on finite graphs. http://arkiv.org/list/math.PR/0410430, 2004

  62. Pitman, J.: Combinatorial stochastic processes. Lecture notes for St. Flour course, July 2002, Picard, J. (ed.), Lecture Notes in Mathematics, Vol. 875, Springer, Berlin-Heidelberg-New York, 2006

  63. Perkins, E.: Dawson–Watanabe superprocesses and measure-valued diffusions. In: P.L. Bernard, ed., Lectures on Probability Theory and Statistics. Ecole d’Eté de Probabilités de Saint–Flour XXIX-1999, Lecture Notes in Mathematics # 1781, Berlin: Springer, 2002, pp. 125–329

  64. Rammal R., Toulouse G. (1983). Random walk on fractal structures and percolation clusters. J. Physique Lett. 44: L13–L22

    Article  Google Scholar 

  65. Sakai A. (2001). Mean-field critical behavior for the contact process. J. Stat. Phys. 104:111–143

    Article  MATH  Google Scholar 

  66. Sakai A. (2002). Hyperscaling inequalities for the contact process and oriented percolation. J. Stat. Phys. 106:201–211

    Article  MATH  Google Scholar 

  67. Salisbury T., Verzani J. (2000). Non-degenerate conditionings of the exit measures of super Brownian motion. Stoch. Processes and Applic. 87:25–52

    Article  MathSciNet  MATH  Google Scholar 

  68. Simon B. (1979). Functional Integration and Quantum Physics. Academic Press, New York

    MATH  Google Scholar 

  69. Slade G. (2002). Scaling limits and super-Brownian motion. Notices A.M.S. 49(9):1056–1067

    MathSciNet  MATH  Google Scholar 

  70. Slade, G.: The lace expansion and its applications. Lecture notes for the 2004 Saint–Flour summer school, Preprint, http://www.math.ubc.ca/slade/research.html, to appear as Springer Lecture Notes in Mathematics # 1879, 2006

  71. Wilson, D.: Generating random trees more quickly than the cover time. In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing (Philadelphia, PA, 1996), New York: ACM, 1996, pp. 296–303

  72. Yaglom A.M. (1947). Certain limit theorems of the theory of branching random processes (Russian). Doklady Akad. Nauk SSSR (N.S.) 56:795–798

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Remco van der Hofstad.

Additional information

Communicated by M. Aizenman

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Hofstad, R. Infinite Canonical Super-Brownian Motion and Scaling Limits. Commun. Math. Phys. 265, 547–583 (2006). https://doi.org/10.1007/s00220-006-0044-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0044-y

Keywords

Navigation