Skip to main content
Log in

A Variational Principle for KPP Front Speeds in Temporally Random Shear Flows

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We establish the variational principle of Kolmogorov-Petrovsky-Piskunov (KPP) front speeds in temporally random shear flows with sufficiently decaying correlations. A key quantity in the variational principle is the almost sure Lyapunov exponent of a heat operator with random potential. To prove the variational principle, we use the comparison principle of solutions, the path integral representation of solutions, and large deviation estimates of the associated stochastic flows. The variational principle then allows us to analytically bound the front speeds. The speed bounds imply the linear growth law in the regime of large root mean square shear amplitude at any fixed temporal correlation length, and the sublinear growth law if the temporal decorrelation is also large enough, the so-called bending phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adler, R.: An Introduction to Continuity, Extrema and Related Topics for General Gaussian Processes. Institute of Math Stat, Lecture Notes-Monograph Series, 12, 1990

  2. Akcoglu M.A., Krengel U. (1981) Ergodic theorems for superadditive processes. J. Reine Angew Math. 323, 53–67

    MATH  MathSciNet  Google Scholar 

  3. Ashurst Wm.T. (2000) Flow-frequency effect upon Huygens front propagation. Combust. Theory Modelling 4, 99–105

    Article  MATH  ADS  Google Scholar 

  4. Berestycki, H.: The influence of advection on the propagation of fronts in reaction-diffusion equations. In: Nonlinear PDEs in Condensed Matter and Reactive Flows. NATO Science Series C 569, Berestycki, H., Pomeau, Y. eds. Doordrecht: Kluwer, 2003

  5. Berestycki H., Hamel F. (2002) Front Propagation in Periodic Excitable Media. Comm. Pure Appl. Math. 60, 949–1032

    Article  MathSciNet  Google Scholar 

  6. Berestycki H., Hamel F., Nadirashvili N. (2005) Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena. Commun. Math Phys. 253(2): 451–480

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Berestycki H., Nirenberg L. (1992) Travelling fronts in cylinders. Ann. Inst. H. Poincaré Anal. Non Linéaire 9, 497–572

    MATH  MathSciNet  Google Scholar 

  8. Carmona R.A., Molchanov S.A. (1994) Parabolic Anderson problem and intermittency. Mem. Amer. Math. Soc. 108(518): viii+125

    MathSciNet  Google Scholar 

  9. Clavin P., Williams F.A. (1979) Theory of premixed-flame propagation in large-scale turbulence. J. Fluid Mech. 90, 598–604

    Article  ADS  Google Scholar 

  10. Conlon J., Doering C. (2005) On Traveling Waves for the Stochastic FKKP Equation. J. Stat Phys. 120(3–4): 421–477

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Constantin P., Kiselev A., Oberman A., Ryzhik L. (2000) Bulk burning rate in passive-reactive diffusion. Arch Rat. Mech Analy 154, 53–91

    Article  MATH  MathSciNet  Google Scholar 

  12. Cranston M., Mountford T. (2006) Lyapunov exponent for the parabolic Anderson model in R d. J. Funct. Anal. 236, 78–119

    Article  MATH  MathSciNet  Google Scholar 

  13. Denet B. (1999) Possible role of temporal correlations in the bending of turbulent flame velocity. Combust. Theory Modelling 3, 585–589

    Article  MATH  ADS  Google Scholar 

  14. E W., Sinai Y. (2000) New results in mathematical and statistical hydrodynamics. Russ. Math. Surv. 55(4): 635–666

    Article  MATH  MathSciNet  Google Scholar 

  15. Ellis R.S. (1985) Entropy, Large Deviations, and Statistical Mechanics. New York, Springer-Verlag

    MATH  Google Scholar 

  16. Freidlin M.I. (1985) Functional Integration and Partial Differential Equations. Ann. Math. Stud. 1093. Princeton, NJ: Princeton University Press

    Google Scholar 

  17. Freidlin M.I., Wentzell A.D. (1998) Random Perturbations of Dynamical Systems. New York, Springer-Verlag

    MATH  Google Scholar 

  18. Gärtner J., Freidlin M.I. (1979) The propagation of concentration waves in periodic and random media. Dokl. Acad. Nauk SSSR 249, 521–525

    MATH  Google Scholar 

  19. Heinze S., Papanicolaou G., Stevens A. (2001) Variational principles for propagation speeds in inhomogeneous media. SIAM J. Applied Math. 62(1): 129–148

    Article  MATH  MathSciNet  Google Scholar 

  20. Karatzas I., Shreve S. (1991) Brownian Motion and Stochastic Calculus. New York, Springer-Verlag

    MATH  Google Scholar 

  21. Kato T. (1995) Perturbation Theory for Linear Operators. Berlin, Springer-Verlag

    MATH  Google Scholar 

  22. Khouider B., Bourlioux A., Majda A. (2001) Parameterizing turbulent flame speed-Part I: unsteady shears, flame residence time and bending. Combustion Theory and Modeling 5, 295–318

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Kingman J.P.C. (1968) The Ergodic Theory of Subadditive Stochastic Processes. J. Royal. Stat. Soc. Series B, 30(3): 499–510

    MATH  MathSciNet  Google Scholar 

  24. Kiselev A., Ryzhik L. (2001) Enhancement of the traveling front speeds in reaction-diffusion equations with advection. Ann. de l’Inst. Henri Poincaré, Analyse Nonlinéaire, 18, 309–358

    Article  MATH  MathSciNet  Google Scholar 

  25. Majda A., Souganidis P.E. (1994) Large scale front dynamics for turbulent reaction-diffusion equations with separated velocity scales. Nonlinearity 7, 1–30

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Majda A., Souganidis P.E. (1998) Flame fronts in a turbulent combustion model with fractal velocity fields. Comm. Pure Appl. Math. LI: 1337–1348

    Article  MathSciNet  Google Scholar 

  27. Mierczynski J., Shen W. (2003) Exponential separation and principal Lyapunov exponent/spectrum for random/nonautonomous parabolic equations. J. Differ. Eqs. 191, 175–205

    Article  MATH  MathSciNet  Google Scholar 

  28. Mueller C., Sowers R. (1995) Random Traveling Waves for the KPP equation with Noise. J. Funct. Anal. 128, 439–498

    Article  MATH  MathSciNet  Google Scholar 

  29. Nolen J., Rudd M., Xin J. (2005) Existence of KPP fronts in spatially-temporally periodic advection and variational principle for propagation speeds. Dynamics of PDE 2(1): 1–24

    MATH  MathSciNet  Google Scholar 

  30. Nolen J., Xin J. (2003) Reaction diffusion front speeds in spatially-temporally periodic shear flows. SIAM J. Multiscale Modeling and Simulation 1(4): 554–570

    Article  MATH  MathSciNet  Google Scholar 

  31. Nolen J., Xin J.(2004) Min-Max Variational Principle and Front Speeds in Random Shear Flows. Meth. Appl. Anal. 11(4): 635–644

    MathSciNet  MATH  Google Scholar 

  32. Nolen J., Xin J. (2005) Existence of KPP type fronts in space–time periodic shear flows and a study of minimal speeds based on variational principle. Discrete and Cont. Dyn. Syst. 13(5): 1217–1234

    Article  MATH  MathSciNet  Google Scholar 

  33. Nolen J., Xin J. (2005) A Variational Principle Based Study of KPP Minimal Front Speeds in Random Shears. Nonlinearity 18, 1655–1675

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. Nolen, J., Xin, J.: Variational Principle Based Computation of KKP Front Speeds in Temporally Random Shear Flows. In preparation, 2006

  35. Peters N. (2000) Turbulent Combustion. Cambridge, Cambridge University Press

    MATH  Google Scholar 

  36. Ronney, P.: Some open issues in premixed turbulent combustion. In: Modeling in Combustion Science (Buckmaster, J.D., Takeno, T. eds. Lecture Notes In Physics, 449, Berlin: Springer-Verlag, (1995), pp. 3–22

  37. Shen W. (2004) Traveling Waves in Diffusive Random Media. J. Dyn. Diff. Eqs. 16(4): 1011–1060

    Article  MATH  Google Scholar 

  38. Vladimirova N., Constantin P., Kiselev A., Ruchayskiy O., Ryzhik L. (2003) Flame enhancement and quenching in fluid flows. Combust. Theory and Modeling 7, 487–508

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. Xin J. (1991) Existence and stability of travelling waves in periodic media governed by a bistable nonlinearity. J. Dyn. Diff. Eqs. 3, 541–573

    Article  MATH  MathSciNet  Google Scholar 

  40. Xin J. (1992) Existence of planar flame fronts in convective–diffusive periodic media. Arch. Rat. Mech. Anal. 121, 205–233

    Article  MATH  MathSciNet  Google Scholar 

  41. Xin J. (2000) Front propagation in heterogeneous media. SIAM Review 42(2): 161–230

    Article  MathSciNet  Google Scholar 

  42. Xin J. (2003) KPP front speeds in random shears and the parabolic Anderson problem. Meth. Appl. Anal. 10(2): 191–198

    MATH  MathSciNet  Google Scholar 

  43. Yakhot V. (1988) Propagation velocity of premixed turbulent flames. Comb. Sci. Tech 60, 191

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Nolen.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nolen, J., Xin, J. A Variational Principle for KPP Front Speeds in Temporally Random Shear Flows. Commun. Math. Phys. 269, 493–532 (2007). https://doi.org/10.1007/s00220-006-0144-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0144-8

Keywords

Navigation