Skip to main content
Log in

Remarks about the Inviscid Limit of the Navier–Stokes System

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we prove two results about the inviscid limit of the Navier-Stokes system. The first one concerns the convergence in H s of a sequence of solutions to the Navier-Stokes system when the viscosity goes to zero and the initial data is in H s. The second result deals with the best rate of convergence for vortex patch initial data in 2 and 3 dimensions. We present here a simple proof which also works in the 3D case. The 3D case is new.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abidi H., Danchin R. (2004). Optimal bounds for the inviscid limit of Navier-Stokes equations. Asymptot. Anal. 38(1): 35–46

    MathSciNet  Google Scholar 

  2. Beirão da Veiga H. (1994). On the singular limit for slightly compressible fluids. Calc. Var. Part. Differ. Eqs. 2(2): 205–218

    Article  Google Scholar 

  3. Beirão da Veiga H. (1994). Singular limits in compressible fluid dynamics. Arch. Rat. Mech. Anal. 128(4): 313–327

    Article  Google Scholar 

  4. Bertozzi A.L., Constantin P. (1993). Global regularity for vortex patches. Commun. Math. Phys. 152(1): 19–28

    Article  ADS  MathSciNet  Google Scholar 

  5. Bona J.L., Smith R. (1975). The initial-value problem for the Korteweg-de Vries equation. Philos. Trans. Roy. Soc. London Ser. A 278(1287): 555–601

    ADS  MathSciNet  Google Scholar 

  6. Bony J.-M. (1981). Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. (4) 14(2): 209–246

    MathSciNet  Google Scholar 

  7. Chemin J.-Y. (1993). Persistance de structures géométriques dans les fluides incompressibles bidimensionnels. Ann. Sci. École Norm. Sup. (4) 26(4): 517–542

    MathSciNet  Google Scholar 

  8. Chemin J.-Y. (1995). Fluides parfaits incompressibles. Astérisque 230: 177

    MathSciNet  Google Scholar 

  9. Chemin J.-Y. (1996). A remark on the inviscid limit for two-dimensional incompressible fluids. Comm. Part. Differ. Eqs. 21(11-12): 1771–1779

    MathSciNet  Google Scholar 

  10. Constantin P. (1986). Note on loss of regularity for solutions of the 3-D incompressible Euler and related equations. Commun. Math. Phys. 104(2): 311–326

    Article  ADS  MathSciNet  Google Scholar 

  11. Constantin P., Wu J. (1995). Inviscid limit for vortex patches. Nonlinearity 8(5): 735–742

    Article  ADS  MathSciNet  Google Scholar 

  12. Constantin P., Wu J. (1996). The inviscid limit for non-smooth vorticity. Indiana Univ. Math. J. 45(1): 67–81

    Article  MathSciNet  Google Scholar 

  13. Danchin R. (1999). Persistance de structures géométriques et limite non visqueuse pour les fluides incompressibles en dimension quelconque. Bull. Soc. Math. France 127(2): 179–227

    MathSciNet  Google Scholar 

  14. Dutrifoy A. (2003). On 3-D vortex patches in bounded domains. Comm. Part. Differ. Eqs. 28(7-8): 1237–1263

    Article  MathSciNet  Google Scholar 

  15. Gamblin P., Saint Raymond X. (1995). On three-dimensional vortex patches. Bull. Soc. Math. France 123(3): 375–424

    MathSciNet  Google Scholar 

  16. Huang C. (2001). Singular integral system approach to regularity of 3D vortex patches. Indiana Univ. Math. J. 50(1): 509–552

    Article  MathSciNet  Google Scholar 

  17. Kato T. (1972). Nonstationary flows of viscous and ideal fluids in R 3. J. Funct. Anal. 9: 296–305

    Article  Google Scholar 

  18. Kato, T.: Quasi-linear equations of evolution, with applications to partial differential equations. In: Spectral Theory and Differential Equations (Proc. Sympos., Dundee, 1974; dedicated to Konrad Jörgens), Lecture Notes in Math., Vol. 448. Berlin: Springer, 1975, pp. 25–70

  19. Majda, A.J., Bertozzi, A.L.: Vorticity and incompressible flow. Volume 27 of Cambridge Texts in Applied Mathematics. Cambridge: Cambridge University Press, 2002

  20. Masmoudi N. (1998). The Euler limit of the Navier-Stokes equations and rotating fluids with boundary. Arch. Rat. Mech. Anal. 142(4): 375–394

    Article  MathSciNet  Google Scholar 

  21. Masmoudi, N.: Examples of singular limits in hydrodynamics. In: Handbook of Differential Equations, Vol. 3, pp. 195–275. North-Holland, Amsterdam (2007)

  22. Swann H.S.G. (1971). The convergence with vanishing viscosity of nonstationary Nvier–Stokes flow to ideal flow in R 3. Trans. Amer. Math. Soc. 157: 373–397

    Article  MathSciNet  Google Scholar 

  23. Wolibner W. (1933). Un theorème sur l’existence du mouvement plan d’un fluide parfait, homogène, incompressible, pendant un temps infiniment long. Math. Z. 37(1): 698–726

    Article  MathSciNet  Google Scholar 

  24. Yudovich V.I. (1963). Non-stationary flows of an ideal incompressible fluid. u Z. Vy cisl. Mat. i Mat. Fiz. 3: 1032–1066

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Masmoudi.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masmoudi, N. Remarks about the Inviscid Limit of the Navier–Stokes System. Commun. Math. Phys. 270, 777–788 (2007). https://doi.org/10.1007/s00220-006-0171-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0171-5

Keywords

Navigation