Skip to main content
Log in

Estimates of Heat Kernel of Fractional Laplacian Perturbed by Gradient Operators

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct a continuous transition density of the semigroup generated by \({\Delta^{\alpha/2} + b(x)\cdot \nabla}\) for \({1 < \alpha < 2, d\ge 1}\) and b in the Kato class \({\mathcal{K}_d^{\alpha-1}}\) on \({\mathbb{R}^d}\) . For small time the transition density is comparable with that of the fractional Laplacian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berg C. and Forst G. (1975). Potential theory on locally compact abelian groups. Springer-Verlag, New York

    MATH  Google Scholar 

  2. Bogdan K. (2000). Sharp estimates for the Green function in Lipschitz domains. J. Math. Anal. Appl. 243(2): 326–337

    Article  MATH  MathSciNet  Google Scholar 

  3. Bogdan K. and Byczkowski T. (1999). Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains. Studia Math. 133(1): 53–92

    MATH  MathSciNet  Google Scholar 

  4. Bogdan, K., Byczkowski, T.: Potential theory of Schrödinger operator based on fractional Laplacian. Probab. Math. Statist. 20(2, Acta Univ. Wratislav. No. 2256), 293–335 (2000)

  5. Bogdan, K., Hansen, W., Jakubowski, T.: On time-dependent Schrödinger perturbations. (2006) preprint.

  6. Bogdan K., Kulczycki T. and Nowak A. (2002). Gradient estimates for harmonic and q-harmonic functions of symmetric stable processes. Illinois J. Math. 46(2): 541–556

    MATH  MathSciNet  Google Scholar 

  7. Bogdan, K., Kwaśnicki, M., Kulczycki, T.: Estimates and structure of α-harmonic functions. 2006 submitted (available at http://front.math.ucdavis.edu/math.PR/0607561).

  8. Bogdan K., Stós A. and Sztonyk P. (2003). Harnack inequality for stable processes on d-sets. Studia Math. 158(2): 163–198

    Article  MATH  MathSciNet  Google Scholar 

  9. Bogdan, K., Sztonyk, P.: Estimates of potential kernel and Harnack’s inequality for anisotropic fractional Laplacian. 2006 submitted (available at http://front.math.ucdavis.edu/math.PR/0507579)

  10. Carmona R., Masters W.C. and Simon B. (1990). Relativistic Schrödinger operators: asymptotic behavior of the eigenfunctions. J. Funct. Anal. 91(1): 117–142

    Article  MATH  MathSciNet  Google Scholar 

  11. Chen Z.-Q. and Kumagai T. (2003). Heat kernel estimates for stable-like processes on d-sets. Stochastic Process. Appl. 108(1): 27–62

    Article  MATH  MathSciNet  Google Scholar 

  12. Chen Z.-Q. and Song R. (1997). Intrinsic ultracontractivity and conditional gauge for symmetric stable processes. J. Funct. Anal. 150(1): 204–239

    Article  MATH  MathSciNet  Google Scholar 

  13. Chen Z.-Q. and Song R. (2003). Drift transforms and Green function estimates for discontinuous processes. J. Funct. Anal. 201(1): 262–281

    Article  MATH  MathSciNet  Google Scholar 

  14. Chung, K.L., Zhao, Z.X.: From Brownian motion to Schrödinger’s equation. Volume 312 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Berlin: Springer-Verlag, 1995

  15. Cranston M., Fabes E. and Zhao Z. (1988). Conditional gauge and potential theory for the Schrödinger operator. Trans. Amer. Math. Soc. 307(1): 171–194

    Article  MATH  MathSciNet  Google Scholar 

  16. Cranston, M., Zhao, Z.: Conditional transformation of drift formula and potential theory for \({\frac{1}{2}\Delta + b(\cdot)\cdot\nabla}\) . Commun. Math. Phys. 112(4), 613–625 (1987)

    Google Scholar 

  17. Doetsch, G.: Introduction to the theory and application of the Laplace transformation. New York: Springer-Verlag, 1974, translated from the second German edition by Walter Nader

  18. Droniou J. and Imbert C. (2006). Fractal first order partial differential equations. Arch. Ration. Mech. Anal. 182(2): 299–331

    Article  MATH  MathSciNet  Google Scholar 

  19. Grzywny, T., Ryznar, M.: Estimates for perturbations of fractional Laplacian. 2006, submitted

  20. Hansen W. (2005). Uniform boundary Harnack principle and generalized triangle property. J. Funct. Anal. 226(2): 452–484

    Article  MATH  MathSciNet  Google Scholar 

  21. Hansen W. (2006). Global comparison of perturbed Green functions. Math. Ann. 334(3): 643–678

    Article  MATH  MathSciNet  Google Scholar 

  22. Jacob N. (2001). Pseudo differential operators and Markov processes. Vol. I. Imperial College Press, London

    Google Scholar 

  23. Jacob N. (2002). Pseudo differential operators and Markov processes. Vol. II. Imperial College Press, London

    MATH  Google Scholar 

  24. Jacob N. (2005). Pseudo differential operators and Markov processes. Vol. III. Imperial College Press, London

    MATH  Google Scholar 

  25. Jakubowski, T.: Estimates of Green function for fractional Laplacian perturbed by gradient. Preprint, 2006

  26. Jakubowski, T.: The estimates of the mean first exit time from the ball for the α–stable Ornstein - Uhlenbeck processes. (2006) submitted, available at http://math.univ-angers.fr/publications/prepub/fichiers/00225.pdf

  27. Jakubowski, T.: On Harnack inequality for α-stable Ornstein-Uhlenbeck processes. (2006) submitted, available at http://math.univ-angers.fr/publications/prepub/fichiers/00224.pdf

  28. Jakubowski, T.: The estimates for the Green function in Lipschitz domains for the symmetric stable processes. Probab. Math. Statist. 22(2, Acta Univ. Wratislav. No.2470), 419–441 (2002)

  29. Janicki, A., Weron, A.: Simulation and chaotic behavior of α-stable stochastic processes. Volume 178 of Monographs and Textbooks in Pure and Applied Mathematics. New York: Marcel Dekker Inc., 1994

  30. Karch, G., Woyczyński, W.: Fractal Hamilton-Jacobi-KPZ equations. Trans. Amer. Math. Soc., to appear

  31. Kim, P., Lee, Y.-R.: Generalized 3G theorem and application to relativistic stable process on non-smooth open sets. 2006, submitted

  32. Kim, P., Song, R.: Two-sided estimates on the density of Brownian motion with singular drift. To appear in Ill. J. Math.

  33. Ryznar M. (2002). Estimates of Green function for relativistic α-stable process. Potential Anal. 17(1): 1–23

    Article  MATH  MathSciNet  Google Scholar 

  34. Samorodnitsky, G., Taqqu, M.S.: Stable non-Gaussian random processes. Stochastic Modeling. New York: Chapman & Hall, 1994

  35. Sato, K.-i.: Lévy processes and infinitely divisible distributions. Volume 68 of Cambridge Studies in Advanced Mathematics. Cambridge: Cambridge University Press, 1999, translated from the 1990 Japanese original, revised by the author.

  36. Song R. (1993). Probabilistic approach to the Dirichlet problem of perturbed stable processes. Probab. Theory Related Fields 95(3): 371–389

    Article  MATH  MathSciNet  Google Scholar 

  37. Song R. (1995). Feynman-Kac semigroup with discontinuous additive functionals. J. Theoret. Probab. 8(4): 727–762

    Article  MATH  MathSciNet  Google Scholar 

  38. Takeda M. (2002). Conditional gaugeability and subcriticality of generalized Schrödinger operators. J. Funct. Anal. 191(2): 343–376

    Article  MATH  MathSciNet  Google Scholar 

  39. Takeda, M.: Gaugeability for Feynman-Kac functionals with applications to symmetric α-stable processes. Proc. Amer. Math. Soc. 134(9), 2729–2738 (electronic) (2006)

  40. Takeda M. and Uemura T. (2004). Subcriticality and gaugeability for symmetric α-stable processes. Forum Math. 16(4): 505–517

    Article  MATH  MathSciNet  Google Scholar 

  41. Watanabe, T.: Asymptotic estimates of multi-dimensional stable densities and their applications. (2004), Trans. Amer. Math. Soc, in press

  42. Yosida K. (1995). Functional analysis. Classics in Mathematics. Springer-Verlag, Berlin

    Google Scholar 

  43. Zhang, Q.: A Harnack inequality for the equation \({\nabla(a\nabla u)+b\nabla u=0}\) , when \({\vert b\vert \in K\sb {n+1}}\). Manuscripta Math. 89(1), 61–77 (1996)

  44. Zhang, Q.S.: Gaussian bounds for the fundamental solutions of \({\nabla (A\nabla u)+B\nabla u-u\sb t=0}\). Manuscripta Math. 93(3), 381–390 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Bogdan.

Additional information

Communicated by B. Simon

Partially supported by KBN and MEN.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogdan, K., Jakubowski, T. Estimates of Heat Kernel of Fractional Laplacian Perturbed by Gradient Operators. Commun. Math. Phys. 271, 179–198 (2007). https://doi.org/10.1007/s00220-006-0178-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0178-y

Keywords

Navigation