Skip to main content
Log in

Low-regularity Schrödinger maps, II: global well-posedness in dimensions d ≥  3

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In dimensions d ≥ 3, we prove that the Schrödinger map initial-value problem

$$ \left\{ \begin{array}{l} \partial_ts=s\times\Delta_x s\hbox{ on }\mathbb{R}^d\times\mathbb{R};\\ s(0)=s_0 \end{array} \right. $$

is globally well-posed for small data s 0 in the critical Besov spaces \({\dot{B}_Q^{d/2}(\mathbb{R}^d;\mathbb{S}^2)}\), \({Q\in\mathbb{S}^2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bejenaru, I.: On Schrödinger maps. Preprint 2006, available at arxiv.org 0604255

  2. Chang N.-H., Shatah J. and Uhlenbeck K. (2000). Schrödinger maps. Comm. Pure Appl. Math. 53: 590–602

    Article  MATH  MathSciNet  Google Scholar 

  3. Ding W.Y. and Wang Y.D. (2001). Local Schrödinger flow into Kähler manifolds. Sci. China Ser. A 44: 1446–1464

    Article  MATH  MathSciNet  Google Scholar 

  4. Ionescu, A.D., Kenig, C.: Global well-posedness of the Benjamin–Ono equation in low-regularity spaces. J. Amer. Math. Soc. 50894-0347(06) 00551-0, published electronically 24 october 2006

  5. Ionescu, A.D., Kenig, C.: Low-regularity Schrödinger maps. Preprint 2006, available at arxiv.org 0605210

  6. Kato J. (2005). Existence and uniqueness of the solution to the modified Schrödinger map. Math. Res. Lett. 12: 171–186

    MATH  MathSciNet  Google Scholar 

  7. Kato, J., Koch, H.: Uniqueness of the modified Schrödinger map in \({H^{3/4+\epsilon}(\mathbb{R}^2)}\). Preprint, 2005, available at arxiv.org 0508423

  8. Kenig C.E. and Nahmod A. (2005). The Cauchy problem for the hyperbolic-elliptic Ishimori system and Schrödinger maps. Nonlinearity 18: 1987–2009

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Kenig, C.E., Pollack, D., Staffilani, G., Toro, T.: The Cauchy problem for Schrödinger flows into Kähler manifolds. Preprint, 2005, available at arxiv.org 0511701

  10. Klainerman S. and Machedon M. (1993). Space-time estimates for null forms and the local existence theorem. Comm. Pure Appl. Math. 46: 1221–1268

    MATH  MathSciNet  Google Scholar 

  11. Klainerman S. and Rodnianski I. (2001). On the global regularity of wave maps in the critical Sobolev norm. Internat. Math. Res. Notices 13: 655–677

    Article  MathSciNet  Google Scholar 

  12. Klainerman S. and Selberg S. (1997). Remark on the optimal regularity for equations of wave maps type. Comm. Part. Differ. Eqs. 22: 901–918

    MATH  MathSciNet  Google Scholar 

  13. McGahagan, H.: An approximation scheme for Schrödinger maps. Preprint, 2005

  14. Nahmod A., Stefanov A. and Uhlenbeck K. (2003). On the well-posedness of the wave map problem in high dimensions. Comm. Anal. Geom. 11: 49–83

    MATH  MathSciNet  Google Scholar 

  15. Nahmod A., Stefanov A. and Uhlenbeck K. (2003). On Schrödinger maps. Comm. Pure Appl. Math. 56: 114–151

    Article  MATH  MathSciNet  Google Scholar 

  16. Nahmod, A., Stefanov, A., Uhlenbeck, K.: Erratum: “On Schrödinger maps” [Comm. Pure Appl. Math. 56 114–151 (2003)], Comm. Pure Appl. Math. 57, 833–839 (2004)

  17. Nahmod, A., Shatah, J., Vega, L., Zeng, C.: Schrödinger maps into Hermitian symmetric spaces and their associated frame systems, available at arxiv.org 0612481

  18. Shatah J. and Struwe M. (2002). The Cauchy problem for wave maps. Int. Math. Res. Notices 11: 555–571

    Article  MathSciNet  Google Scholar 

  19. Sulem P.L., Sulem C. and Bardos C. (1986). On the continuous limit for a system of classical spins. Commun. Math. Phys. 107: 431–454

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Soyeur A. (1992). The Cauchy problem for the Ishimori equations. J. Funct. Anal. 105: 233–255

    Article  MATH  MathSciNet  Google Scholar 

  21. Tao T. (2001). Global regularity of wave maps. I. Small critical Sobolev norm in high dimension. Internat. Math. Res. Notices 6: 299–328

    Google Scholar 

  22. Tao T. (2001). Global regularity of wave maps. II. Small energy in two dimensions. Commun. Math. Phys. 224: 443–544

    Article  MATH  ADS  Google Scholar 

  23. Tataru D. (1998). Local and global results for wave maps. I. Comm. Part. Differ. Eq. 23: 1781–1793

    MATH  MathSciNet  Google Scholar 

  24. Tataru D. (2001). On global existence and scattering for the wave maps equation. Amer. J. Math. 123: 37–77

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Tataru D. (2005). Rough solutions for the wave maps equation. Amer. J. Math. 127: 293–377

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandru D. Ionescu.

Additional information

Communicated by P. Constantin

The first author was supported in part by an NSF grant and a Packard fellowship.

The second author was supported in part by an NSF grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ionescu, A.D., Kenig, C.E. Low-regularity Schrödinger maps, II: global well-posedness in dimensions d ≥  3. Commun. Math. Phys. 271, 523–559 (2007). https://doi.org/10.1007/s00220-006-0180-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0180-4

Keywords

Navigation