Skip to main content
Log in

Unitary Positive-Energy Representations of Scalar Bilocal Quantum Fields

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The superselection sectors of two classes of scalar bilocal quantum fields in D ≥ 4 dimensions are explicitly determined by working out the constraints imposed by unitarity. The resulting classification in terms of the dual of the respective gauge groups U(N) and O(N) confirms the expectations based on general results obtained in the framework of local nets in algebraic quantum field theory, but the approach using standard Lie algebra methods rather than abstract duality theory is complementary. The result indicates that one does not lose interesting models if one postulates the absence of scalar fields of dimension D−2 in models with global conformal invariance. Another remarkable outcome is the observation that, with an appropriate choice of the Hamiltonian, a Lie algebra embedded into the associative algebra of observables completely fixes the representation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakalov B. and Nikolov N.M. (2006). Jacobi identity for vertex algebras in higher dimensions. J. Math. Phys. 47: 053505

    Article  MathSciNet  Google Scholar 

  2. Baumann K. (1976). There are no scalar Lie fields in three or more dimensional space-time. Commun. Math. Phys. 47: 69–74

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Bernstein, I.N., Gelfand, I.M., Gelfand, S.I.: Structure of representations that are generated by vectors of highest weight (Russian). Funk. Anal. i Prilozen. 5, 1–9 (1971); English translation, Funct. Anal. Appl. 5, 1–8 (1971)

    Google Scholar 

  4. Boerner, H.: Representations of Groups, 2nd edition, Amsterdam: North-Holland Publishing Company 1970

  5. Buchholz D., Doplicher S., Longo R. and Roberts J.E. (1992). A new look at Goldstone’s theorem. Rev. Math. Phys. SI   1: 49–84

    Article  MathSciNet  Google Scholar 

  6. Carpi S. and Conti, R. (2005). Classification of subsystems for graded-local nets with trivial superselection structure. Commun. Math. Phys. 253: 423–449

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Doplicher S. and Roberts J.E. (1990). Why there is a field algebra with a compact gauge group describing the superselection structure in particle physics. Commun. Math. Phys. 131: 51–107

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Enright, T.J., Parthasarathy, R.: A proof of a conjecture of Kashiwara and Vergne. In: Noncommutative harmonic analysis and Lie groups (Marseille, 1980), Lecture Notes in Math. 880, Berlin-New York: Springer, 1981, pp. 74–90

  9. Enright, T.J., Howe, R., Wallach, N.: A classification of unitary highest weight modules. In: Representation theory of reductive groups (Park City, Utah, 1982), Progr. Math. 40, Boston, MA: Birkhäuser, 1983, pp. 97–143

  10. Haag R. (1992). Local Quantum Physics. Springer, Berlin-New York

    MATH  Google Scholar 

  11. Jakobsen H.P. (1981). The last possible place of unitarity for certain highest weight modules. Math. Ann. 256: 439–447

    Article  MATH  MathSciNet  Google Scholar 

  12. Jordan P. (1935). Der Zusammenhang der symmetrischen und linearen Gruppen und das Mehrkörperproblem. Zeitschr. für Physik 94: 531

    Article  MATH  Google Scholar 

  13. Kac V. and Radul A. (1996). Representation theory of the vertex algebra W 1+∞. Transform. Groups 1: 41–70

    MATH  MathSciNet  Google Scholar 

  14. Kashiwara M. and Vergne M. (1978). On the Segal–Shale–Weil representations and harmonic polynomials. Invent. Math. 44: 1–47

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Lowenstein J.H. (1967). The existence of scalar Lie fields. Commun. Math. Phys. 6: 49–60

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Nikolov N.M. (2005). Vertex algebras in higher dimensions and globally conformal invariant quantum field theory. Commun. Math. Phys. 253: 283–322

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Nikolov, N.M., Rehren, K.-H., Todorov, I.T.: Harmonic bilocal fields generated by globally conformal invariant scalar fields. (In preparation)

  18. Nikolov N.M., Rehren K.-H. and Todorov I.T. (2005). Partial wave expansion and Wightman positivity in conformal field theory. Nucl. Phys. B 722: 266–296

    Article  MathSciNet  ADS  Google Scholar 

  19. Nikolov N.M., Stanev Ya.S. and Todorov I.T. (2002). Four dimensional CFT models with rational correlation functions. J. Phys. A: Math. Gen. 35: 2985–3007

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Nikolov, N.M., Stanev, Ya.S., Todorov, I.T.: Globally conformal invariant gauge field theory with rational correlation functions. Nucl. Phys. B670[FS], 373–400 (2003)

  21. Nikolov N.M. and Todorov I.T. (2001). Rationality of conformally invariant local correlation functions on compactified Minkowski space. Commun. Math. Phys. 218: 417–436

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Nikolov N.M. and Todorov I.T. (2005). Elliptic thermal correlation functions and modular forms in a globally conformal invariant QFT. Rev. Math. Phys. 17: 613–667

    Article  MATH  MathSciNet  Google Scholar 

  23. Reeh H. and Schlieder S. (1961). Bemerkungen zur Unitäräquivalenz von Lorentz-invarianten Feldern. Nuovo Cim. 22: 1051–1068

    MathSciNet  Google Scholar 

  24. Roberts, J.E.: Lectures on algebraic quantum field theory. In: The Algebraic Theory of Superselection Sectors, D. Kastler (ed.), Singapore: World Scientific, 1990, pp. 1–112

  25. Schmidt M.U. (1990). Lowest weight representations of some infinite dimensional groups on Fock spaces. Acta Appl. Math. 18: 59–84

    Article  MATH  MathSciNet  Google Scholar 

  26. Schwinger, J.: On angular momentum. In: Quantum Theory of Angular Momentum, L.C. Biedenharn, H. Van Dam (eds.), New York: Academic Press, 1965, pp. 229–279

  27. Todorov, I.T.: Infinite-dimensional Lie algebras in conformal QFT models. In: A.O. Barut, H.-D. (eds.), Conformal Groups and Related Symmetries. Physical Results and Mathematical Background, Lecture Notes in Physics 261, Berlin: Springer, 1986, pp. 387–443

  28. Verma, D.-N.: Structure of certain induced representations of complex semisimple Lie algebras. Bull. Amer. Math. Soc. 74, 160–166 (1968); Errata, ibid. 628

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Henning Rehren.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakalov, B., Nikolov, N.M., Rehren, KH. et al. Unitary Positive-Energy Representations of Scalar Bilocal Quantum Fields. Commun. Math. Phys. 271, 223–246 (2007). https://doi.org/10.1007/s00220-006-0182-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0182-2

Keywords

Navigation