Skip to main content
Log in

Full-Wave Invisibility of Active Devices at All Frequencies

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

There has recently been considerable interest in the possibility, both theoretical and practical, of invisibility (or “cloaking”) from observation by electromagnetic (EM) waves. Here, we prove invisibility with respect to solutions of the Helmholtz and Maxwell’s equations, for several constructions of cloaking devices. The basic idea, as in the papers [GLU2, GLU3, Le, PSS1], is to use a singular transformation that pushes isotropic electromagnetic parameters forward into singular, anisotropic ones. We define the notion of finite energy solutions of the Helmholtz and Maxwell’s equations for such singular electromagnetic parameters, and study the behavior of the solutions on the entire domain, including the cloaked region and its boundary. We show that, neglecting dispersion, the construction of [GLU3, PSS1] cloaks passive objects, i.e., those without internal currents, at all frequencies k. Due to the singularity of the metric, one needs to work with weak solutions. Analyzing the behavior of such solutions inside the cloaked region, we show that, depending on the chosen construction, there appear new “hidden” boundary conditions at the surface separating the cloaked and uncloaked regions. We also consider the effect on invisibility of active devices inside the cloaked region, interpreted as collections of sources and sinks or internal currents. When these conditions are overdetermined, as happens for Maxwell’s equations, generic internal currents prevent the existence of finite energy solutions and invisibility is compromised.

We give two basic constructions for cloaking a region D contained in a domain \(\Omega\subset\mathbb R^n, n\ge 3\) , from detection by measurements made at \(\partial\Omega\) of Cauchy data of waves on Ω. These constructions, the single and double coatings, correspond to surrounding either just the outer boundary \(\partial D^+\) of the cloaked region, or both \(\partial D^+\) and \(\partial D^-\) , with metamaterials whose EM material parameters (index of refraction or electric permittivity and magnetic permeability) are conformal to a singular Riemannian metric on Ω. For the single coating construction, invisibility holds for the Helmholtz equation, but fails for Maxwell’s equations with generic internal currents. However, invisibility can be restored by modifying the single coating construction, by either inserting a physical surface at \(\partial D^-\) or using the double coating. When cloaking an infinite cylinder, invisibility results for Maxwell’s equations are valid if the coating material is lined on \(\partial D^-\) with a surface satisfying the soft and hard surface (SHS) boundary condition, but in general not without such a lining, even for passive objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams R. and Fournier J. (2003). Sobolev Spaces. Pure and Applied Mathematics 140. Academic Press, New York-London

    Google Scholar 

  2. Alu A. and Engheta N. (2005). Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E 72: 016623

    Article  ADS  Google Scholar 

  3. Astala K. and Päivärinta L. (2006). Calderón’s inverse conductivity problem in the plane. Annals of Math. 163: 265–299

    Article  MATH  Google Scholar 

  4. Astala K., Lassas M. and Päiväirinta L. (2005). Calderón’s inverse problem for anisotropic conductivity in the plane. Comm. Partial Diff. Eqs. 30: 207–224

    Article  MATH  Google Scholar 

  5. Belishev M. and Kurylev Y. (1992). To the reconstruction of a Riemannian manifold via its spectral data (B-method). Comm. Part. Diff. Eq. 17: 767–804

    Article  MATH  MathSciNet  Google Scholar 

  6. Calderón, A.P.: On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), Rio de Janeiro: Soc. Brasil. Mat., 1980, pp. 65–73

  7. Cummer S., Popa B.-I., Schurig D., Smith D. and Pendry J. (2006). Full-wave simulations of electromagnetic cloaking structures. Phys. Rev. E 74: 036621

    Article  ADS  Google Scholar 

  8. Greenleaf A., Lassas M. and Uhlmann G. (2003). The Calderón problem for conormal potentials, I: Global uniqueness and reconstruction. Comm. Pure Appl. Math. 56(3): 328–352

    Article  MATH  MathSciNet  Google Scholar 

  9. Greenleaf A., Lassas M. and Uhlmann G. (2003). Anisotropic conductivities that cannot detected in EIT, Physiological Measurement (special issue on Impedance Tomography) 24: 413–420

    Google Scholar 

  10. Greenleaf A., Lassas M. and Uhlmann G. (2003). On nonuniqueness for Calderón’s inverse problem. Math. Res. Let. 10(5-6): 685–693

    MATH  MathSciNet  Google Scholar 

  11. Hänninen, I., Lindell, I., Sihvola, A.: Realization of Generalized Soft-and-Hard Boundary. Progress In Electromagnetics Research, PIER 64, 2006, pp. 317–333

  12. Kachalov A. and Kurylev Y. (1998). Multidimensional inverse problem with incomplete boundary spectral data. Comm. Part. Diff. Eq. 23: 55–95

    Article  MATH  MathSciNet  Google Scholar 

  13. Kachalov, A., Kurylev, Y., Lassas, M.: Inverse Boundary Spectral Problems, Chapman and Hall/CRC Monogr. and Surv. in Pure and Appl. Math. 123. Boca Raton, FL: Chapman and Hall/CRC, 2001

  14. Kildal P.-S. (1988). Definition of artificially soft and hard surfaces for electromagnetic waves. Electron. Let. 24: 168–170

    Article  ADS  Google Scholar 

  15. Kildal, P.-S.: Artificially soft and hard surfaces in electromagnetics. IEEE Transactions on Antennas and Propagation 38, 10, 1537–1544 (1990)

    Google Scholar 

  16. Kohn, R., Shen, H., Vogelius, M., Weinstein, M.: In preparation

  17. Kohn, R., Vogelius, M.: Identification of an unknown conductivity by means of measurements at the boundary. In: Inverse Problems, SIAM-AMS Proceedings., 14 (1984)

  18. Kato T. (1995). Perturbation theory for linear operators. Classics in Mathematics. Springer-Verlag, Berlin

    Google Scholar 

  19. Kilpeläinen T., Kinnunen J. and Martio O. (2000). Sobolev spaces with zero boundary values on metric spaces. Potential Anal. 12(3): 233–247

    Article  MathSciNet  Google Scholar 

  20. Kurylev Y. (1993). Multidimensional inverse boundary problems by the BC-method: groups of transformations and niqueness results. Math. Comput. Modelling 18: 33–46

    Article  MATH  MathSciNet  Google Scholar 

  21. Kurylev Y., Lassas M. and Somersalo E. (2006). Maxwell’s equations with a polarization independent wave velocity: Direct and inverse problems. J. Math. Pures et Appl. 86: 237–270

    MATH  MathSciNet  Google Scholar 

  22. Lassas M. and Uhlmann G. (2001). Determining Riemannian manifold from boundary measurements. Ann. Sci. École Norm. Sup. 34(5): 771–787

    MATH  MathSciNet  Google Scholar 

  23. Lassas M., Taylor M. and Uhlmann G. (2003). The dirichlet-to-neumann map for complete Riemannian manifolds with boundary. Comm. Geom. Anal. 11: 207–222

    MATH  MathSciNet  Google Scholar 

  24. Lee J. and Uhlmann G. (1989). Determining anisotropic real-analytic conductivities by boundary measurements. Comm. Pure Appl. Math. 42: 1097–1112

    Article  MATH  MathSciNet  Google Scholar 

  25. Leonhardt, U.: Optical Conformal Mapping. Science 312, 1777–1780, 23 June, 2006

    Google Scholar 

  26. Leonhardt U. and Philbin T. (2006). General relativity in electrical engineering. New J. Phys. 8: 247

    Article  ADS  Google Scholar 

  27. Lindell I. (2002). Generalized soft-and-hard surface. IEEE Tran. Ant. and Propag. 50: 926–929

    Article  ADS  MathSciNet  Google Scholar 

  28. Maz‘ja V. (1985). Sobolev Spaces. Springer-Verlag, Berlin

    MATH  Google Scholar 

  29. Melrose R. (1995). Geometric scattering theory. Cambridge Univ. Press, Cambridge

    MATH  Google Scholar 

  30. Milton G., Briane M. and Willis J. (2006). On cloaking for elasticity and physical equations with a transformation invariant form. New J. Phys. 8: 248

    Article  ADS  Google Scholar 

  31. Milton G. and Nicorovici N.-A. (2006). On the cloaking effects associated with anomalous localized resonance. Proc. Royal Soc. A 462: 3027–3059

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Nachman A. (1988). Reconstructions from boundary measurements. Ann. of Math. (2) 128: 531–576

    Article  MathSciNet  Google Scholar 

  33. Nachman A. (1996). Global uniqueness for a two-dimensional inverse boundary value problem. Ann. of Math. 143: 71–96

    Article  MATH  MathSciNet  Google Scholar 

  34. Pendry J.B., Schurig D. and Smith D.R. (2006). Controlling electromagnetic fields. Science 312: 1780–1782

    Article  ADS  MathSciNet  Google Scholar 

  35. Pendry J.B., Schurig D. and Smith D.R. (2006). Calculation of material properties and ray tracing in transformation media. Opt. Exp. 14: 9794

    Article  ADS  Google Scholar 

  36. Schurig, D., Mock, J., Justice, B., Cummer, S., Pendry, J., Starr, A., Smith, D.: Metamaterial electromagnetic cloak at microwave frequencies. Science Online, 10.1126/science.1133628, Oct. 19, 2006

  37. Serrin J. (1964). Local behavior of solutions of quasi-linear equations. Acta Math. 111: 247–302

    Article  MATH  MathSciNet  Google Scholar 

  38. Sun Z. and Uhlmann G. (2003). Anisotropic inverse problems in two dimensions. Inverse Problems 19: 1001–1010

    Article  MATH  ADS  MathSciNet  Google Scholar 

  39. Sylvester J. (1990). An anisotropic inverse boundary value problem. Comm. Pure Appl. Math. 43: 201–232

    Article  MATH  MathSciNet  Google Scholar 

  40. Sylvester J. and Uhlmann G. (1987). A global uniqueness theorem for an inverse boundary value problem. Ann. of Math. 125: 153–169

    Article  MathSciNet  Google Scholar 

  41. Uhlmann, G.: Scattering by a metric. In: Encyclopedia on Scattering, R. Pike and P. Sabatier, eds. Chap. 6.1.5, London-New York: Academic Press, 2002, pp. 1668–1677

  42. Vogelius, M.: Lecture, Workshop on Inverse Problems and Applications, BIRS, August, 2006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunther Uhlmann.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenleaf, A., Kurylev, Y., Lassas, M. et al. Full-Wave Invisibility of Active Devices at All Frequencies. Commun. Math. Phys. 275, 749–789 (2007). https://doi.org/10.1007/s00220-007-0311-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0311-6

Keywords

Navigation