Skip to main content
Log in

Random Walk on the Incipient Infinite Cluster for Oriented Percolation in High Dimensions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider simple random walk on the incipient infinite cluster for the spread-out model of oriented percolation on \({\mathbb{Z}}^{d} \times {\mathbb{Z}}_+\). In dimensions d > 6, we obtain bounds on exit times, transition probabilities, and the range of the random walk, which establish that the spectral dimension of the incipient infinite cluster is \(\frac {4}{3}\), and thereby prove a version of the Alexander–Orbach conjecture in this setting. The proof divides into two parts. One part establishes general estimates for simple random walk on an arbitrary infinite random graph, given suitable bounds on volume and effective resistance for the random graph. A second part then provides these bounds on volume and effective resistance for the incipient infinite cluster in dimensions d > 6, by extending results about critical oriented percolation obtained previously via the lace expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman M. and Newman C.M. (1984). Tree graph inequalities and critical behavior in percolation models. J. Statist. Phys. 36: 107–143

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Aldous, D., Fill, J.: Reversible Markov Chains and Random Walks on Graphs. Book in preparation, available at http://www.stat.berkeley.edu/~aldous/RWG/book.html, 2003

  3. Alexander S. and Orbach R. (1982). Density of states on fractals: “fractons”. J. Physique (Paris) Lett. 43: L625–L631

    Google Scholar 

  4. Angel, O., Goodman, J., den Hollander, F., Slade, G.: Invasion percolation on regular trees. Ann. Probab., to appear

  5. Barlow M.T. (2004). Random walks on supercritical percolation clusters. Ann. Probab. 32: 3024–3084

    Article  MATH  MathSciNet  Google Scholar 

  6. Barlow M.T., Coulhon T. and Kumagai T. (2005). Characterization of sub-Gaussian heat kernel estimates on strongly recurrent graphs. Comm. Pure Appl. Math. 58: 1642–1677

    Article  MATH  MathSciNet  Google Scholar 

  7. Barlow M.T. and Kumagai T. (2006). Random walk on the incipient infinite cluster on trees. Illinois J. Math. 50: 33–65

    MATH  MathSciNet  Google Scholar 

  8. Kesten H. and Berg J. (1985). Inequalities with applications to percolation and reliability. J. Appl. Prob. 22: 556–569

    Article  MATH  Google Scholar 

  9. Berger N. and Biskup M. (2007). Quenched invariance principle for simple random walk on percolation clusters. Prob. Theory Related Fields 137: 83–120

    Article  MATH  MathSciNet  Google Scholar 

  10. Berger N., Gantert N. and Peres Y. (2003). The speed of biased random walk on percolation clusters. Probab. Theory Related Fields 126: 221–242

    Article  MATH  MathSciNet  Google Scholar 

  11. Bezuidenhout C. and Grimmett G. (1990). The critical contact process dies out. Ann. Probab. 18: 1462–1482

    Article  MATH  MathSciNet  Google Scholar 

  12. Billingsley P. (1995). Probability and Measure, 3rd edition. John Wiley and Sons, New York

    MATH  Google Scholar 

  13. Croydon D. (2008). Volume growth and heat kernel estimates for the continuum random tree. Probab. Theory Related Fields. 140(1–2): 207–238

    MATH  Google Scholar 

  14. Croydon, D.: Convergence of simple random walks on random discrete trees to Brownian motion on the continuum random tree. Ann. Inst. H. Poincaré Probab. Statist., to appear

  15. Doyle, P.G., Snell, J.L.: Random Walks and Electric Networks. Washington DC: Mathematical Association of America, 1984; avilable at http://arxiv.org/abs/math/0001057v1, 2000

  16. Fortuin G., Kastelyn P. and Ginibre J. (1971). Correlation inequalities on some partially ordered sets. Commun. Math. Phys. 22: 89–103

    Article  MATH  ADS  Google Scholar 

  17. Gennes P.G. (1976). La percolation: un concept unificateur. La Recherche 7: 919–927

    Google Scholar 

  18. Grimmett G. (1999). Percolation, 2nd ed. Springer, Berlin

    MATH  Google Scholar 

  19. Grimmett, G., Hiemer, P.: Directed percolation and random walk. In: V. Sidoravicius, editor, In and Out of Equilibrium, Boston: Birkhäuser, pp. 273–297, 2002

    Google Scholar 

  20. van der Hofstad R. (2006). Infinite canonical super-Brownian motion and scaling limits. Commun. Math. Phys. 265: 547–583

    Article  MATH  ADS  Google Scholar 

  21. van der Hofstad, R., den Hollander, F., Slade, G.: Construction of the incipient infinite cluster for spreadout oriented percolation above 4 + 1 dimensions. Commun. Math. Phys. 231, 435–461 (2002)

    Article  MATH  ADS  Google Scholar 

  22. van der Hofstad, R., den Hollander, F., Slade, G.: The survival probability for critical spread-out oriented percolation above 4 + 1 dimensions. I. Induction. Probab. Theory Related Fields 138>, 363–389 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. van der Hofstad, R., den Hollander, F., Slade, G.: The survival probability for critical spread-out oriented percolation above 4 + 1 dimensions. II. Expansion. Ann. Inst. H. Poincaré Probab. Statist. 43, 509–570 (2007)

    Article  MATH  Google Scholar 

  24. van der Hofstad, R., Járai, A.A.: The incipient infinite cluster for high-dimensional unoriented percolation. J. Statist. Phys. 114, 625–663 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. van der Hofstad, R., Slade, G.: A generalised inductive approach to the lace expansion. Probab. Theory Related Fields 122, 389–430 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Slade G. and Hofstad R. (2003). Convergence of critical oriented percolation to super-Brownian motion above 4 +  1 dimensions. Ann. Inst. H. Poincaré Probab. Statist. 39 415–485

    Google Scholar 

  27. Hughes B.D. (1996). Random Walks and Random Environments. Volume 2: Random Environments. Oxford University Press, Oxford

    Google Scholar 

  28. Janssen H.-K. and Täuber U.C. (2005). The field theory approach to percolation processes. Ann. Phys. 315: 147–192

    Article  MATH  ADS  Google Scholar 

  29. Kesten H. (1986). The incipient infinite cluster in two-dimensional percolation. Probab. Theory Related Fields 73: 369–394

    Article  MATH  MathSciNet  Google Scholar 

  30. Kesten H. (1986). Subdiffusive behavior of random walk on a random cluster. Ann. Inst. H. Poincaré Probab. Statist. 22: 425–487

    MATH  MathSciNet  Google Scholar 

  31. Kigami J. (2001). Analysis on Fractals. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  32. Kumagai, T., Misumi, J.: Heat kernel estimates for strongly recurrent random walk on random media, preprint, 2007

  33. Lyons, R., Peres, Y.: Probability on Trees and Networks. Book in preparation, available at http://mypage.iu.edu/~rdlyons/prbtree/prbtree.html

  34. Mathieu P. and Piatnitski A. (2007). Quenched invariance principles for random walks on percolation clusters. Proc. Roy. Soc. A 463: 2287–2307

    Article  MathSciNet  Google Scholar 

  35. Sidoravicius V. and Sznitman A.-S. (2004). Quenched invariance principles for walks on clusters of percolation or among random conductances. Probab. Theory Related Fields 129: 219–244

    Article  MATH  MathSciNet  Google Scholar 

  36. Slade, G.: The Lace Expansion and its Applications. Lecture Notes in Mathematics Vol. 1879. Ecole d’Eté de Probabilités de Saint–Flour XXXIV–2004, Berlin: Springer, 2006

  37. Telcs A. (2001). Volume and time doubling of graphs and random walks: the strongly recurrent case. Comm. Pure Appl. Math. 54: 975–1018

    Article  MATH  MathSciNet  Google Scholar 

  38. Telcs, A.: Local sub-Gaussian estimates on graphs: the strongly recurrent case. Electron. J. Probab. 6, paper 22 (2001)

    Google Scholar 

  39. Telcs A. (2002). A note on rough isometry invariance of resistance. Combin. Probab. Comput. 11: 427–432

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antal A. Járai.

Additional information

Communicated by M. Aizenman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barlow, M.T., Járai, A.A., Kumagai, T. et al. Random Walk on the Incipient Infinite Cluster for Oriented Percolation in High Dimensions. Commun. Math. Phys. 278, 385–431 (2008). https://doi.org/10.1007/s00220-007-0410-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0410-4

Keywords

Navigation