Skip to main content
Log in

Dimers on Surface Graphs and Spin Structures. II

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In a previous paper [3], we showed how certain orientations of the edges of a graph Γ embedded in a closed oriented surface Σ can be understood as discrete spin structures on Σ. We then used this correspondence to give a geometric proof of the Pfaffian formula for the partition function of the dimer model on Γ. In the present article, we generalize these results to the case of compact oriented surfaces with boundary. We also show how the operations of cutting and gluing act on discrete spin structures and how they change the partition function. These operations allow to reformulate the dimer model as a quantum field theory on surface graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Álvarez-Gaumé L., Bost J.-B., Moore G., Nelson P. and Vafa C. (1987). Bosonization on higher genus Riemann surfaces. Commun. Math. Phys. 112: 503–552

    Article  ADS  MATH  Google Scholar 

  2. Atiyah M. (1988). Topological quantum field theories. Inst. Hautes Études Sci. Publ. Math. 68: 175–186

    Article  MathSciNet  MATH  Google Scholar 

  3. Cimasoni D. and Reshetikhin N. (2007). Dimers on surface graphs and spin structures. I. Commun. Math. Phys. 275: 187–208

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Cohn H., Kenyon R. and Propp J. (2001). A variational principle for domino tilings. J. Amer. Math. Soc. 14: 297–346

    Article  MathSciNet  MATH  Google Scholar 

  5. Johnson D. (1980). Spin structures and quadratic forms on surfaces. J. London Math. Soc. (2) 22: 365–373

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Kasteleyn W. (1963). Dimer statistics and phase transitions. J. Math. Phys. 4: 287–293

    Article  ADS  MathSciNet  Google Scholar 

  7. Kasteleyn, W.: Graph Theory and Theoretical Physics. London: Academic Press, 1967, pp. 43–110

  8. Kenyon R. and Okounkov A. (2006). Planar dimers and Harnack curves. Duke Math. J. 131: 499–524

    Article  MathSciNet  MATH  Google Scholar 

  9. Kenyon R., Okounkov A. and Sheffield S. (2006). Dimers and amoebae. Ann. of Math. (2) 163: 1019–1056

    Article  MathSciNet  MATH  Google Scholar 

  10. Kuperberg, G.: An exploration of the permanent-determinant method. Electron. J. Combin. 5, Research Paper 46, (1998) 34 pp. (electronic)

    Google Scholar 

  11. Galluccio, A., Loebl, M.: On the theory of Pfaffian orientations. I. Perfect matchings and permanents. Electron. J. Combin. 6, Cambridge MA: Research Paper 6, (1999) 18 pp. (electronic)

    Google Scholar 

  12. McCoy, B., Wu, T.T.: The two-dimensional Ising model. Cambridge MA: Harvard University Press, 1973

    MATH  Google Scholar 

  13. Segal, G.: The definition of conformal field theory. In: Differential geometrical methods in theoretical physics (Como, 1987), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 250, Dordrecht: Kluwer Acad. Publ., 1988, pp. 165–171

  14. Tesler G. (2000). Matchings in graphs on non-orientable surfaces, J. Combin. Theory Ser. B 78(2): 198–231

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Cimasoni.

Additional information

Communicated by L. Takhtajan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cimasoni, D., Reshetikhin, N. Dimers on Surface Graphs and Spin Structures. II. Commun. Math. Phys. 281, 445–468 (2008). https://doi.org/10.1007/s00220-008-0488-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0488-3

Keywords

Navigation