Skip to main content
Log in

Height Fluctuations in the Honeycomb Dimer Model

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We study a model of random surfaces arising in the dimer model on the honeycomb lattice. For a fixed “wire frame” boundary condition, as the lattice spacing ϵ → 0, Cohn, Kenyon and Propp [3] showed the almost sure convergence of a random surface to a non-random limit shape Σ0. In [12], Okounkov and the author showed how to parametrize the limit shapes in terms of analytic functions, in particular constructing a natural conformal structure on them. We show here that when Σ0 has no facets, for a family of boundary conditions approximating the wire frame, the large-scale surface fluctuations (height fluctuations) about Σ0 converge as ϵ → 0 to a Gaussian free field for the above conformal structure. We also show that the local statistics of the fluctuations near a given point x are, as conjectured in [3], given by the unique ergodic Gibbs measure (on plane configurations) whose slope is the slope of the tangent plane of Σ0 at x.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Ahlfors L., Bers L.: Riemann’s mapping theorem for variable metrics. Ann. Math 72, 385–404 (1960)

    Article  MathSciNet  Google Scholar 

  2. Boutillier, C.: Thesis, Université Paris-Sud, 2004

  3. Cohn H., Kenyon R., Propp J.: A variational principle for domino tilings. J. AMS 14, 297–346 (2001)

    MATH  MathSciNet  Google Scholar 

  4. Cohn H., Larsen M., Propp J.: The shape of a typical boxed plane partition. New York J. Math 4, 137–165 (1998)

    MATH  MathSciNet  Google Scholar 

  5. Fournier J.C.: Pavage des figures planes sans trous par des dominos: fondement graphique de l’algorithme de Thurston, parallélisation, unicité et décomposition. C. R. Acad. Sci. Paris Sér. I Math. 320(1), 107–112 (1995)

    MATH  MathSciNet  Google Scholar 

  6. Kasteleyn, P.: Graph theory and crystal physics. In: Proc. 1967 Graph Theory and Theoretical Physics, London: Academic Press, pp. 43–110

  7. Kenyon R.: Local statistics of lattice dimers. Ann. Inst. H. Poincar Probab. Statist. 33(5), 591–618 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Kenyon R.: Conformal invariance of domino tiling. Ann. Probab. 28, 759–795 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kenyon R.: Dominos and the Gaussian free field. Ann. Probab. 29, 1128–1137 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kenyon R.: The Laplacian and Dirac operators on critical planar graphs. Invent. Math. 150, 409–439 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kenyon, R.: Lectures on dimers. PCMI Lecture notes, to appear

  12. Kenyon R., Okounkov A.: Limit shapes and the complex Burgers equation. Acta. Math. 199(2), 263–302 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kenyon R., Okounkov A., Sheffield S.: Dimers and amoebae. Ann. of Math. (2) 163(3), 1019–1056 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kenyon, R., Propp, J., Wilson, D.: Trees and matchings. Electr. J. Combin. 7 (2000), research paper 25

  15. Kenyon R., Sheffield S.: Dimers, tilings and trees. J. Combin. Theory Ser. B 92(2), 295–317 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lovasz, L., Plummer, M.: Matching Theory, North-Holland Mathematics Studies, 121 Annals of Discrete Mathematics 29, Amsterdam: North-Holland Publishing Co., 1986

  17. Percus J.: One more technique for the dimer problem. J. Math. Phys. 10, 1881–1888 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  18. Sheffield S.: Gaussian free fields for mathematicians. Probab. Theory Related Fields 139(3–4), 521–541 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Sheffield, S.: Random surfaces. Astérisque No. 304 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Kenyon.

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kenyon, R. Height Fluctuations in the Honeycomb Dimer Model. Commun. Math. Phys. 281, 675–709 (2008). https://doi.org/10.1007/s00220-008-0511-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0511-8

Keywords

Navigation