Skip to main content
Log in

Polynomial-Time Algorithm for Simulation of Weakly Interacting Quantum Spin Systems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We describe an algorithm that computes the ground state energy and correlation functions for 2-local Hamiltonians in which interactions between qubits are weak compared to single-qubit terms. The running time of the algorithm is polynomial in n and δ−1, where n is the number of qubits, and δ is the required precision. Specifically, we consider Hamiltonians of the form \({H=H_0+ \epsilon V}\) , where H 0 describes non-interacting qubits, V is a perturbation that involves arbitrary two-qubit interactions on a graph of bounded degree, and \({\epsilon}\) is a small parameter. The algorithm works if \({|\epsilon|}\) is below a certain threshold value \({\epsilon_0}\) that depends only upon the spectral gap of H 0, the maximal degree of the graph, and the maximal norm of the two-qubit interactions. The main technical ingredient of the algorithm is a generalized Kirkwood-Thomas ansatz for the ground state. The parameters of the ansatz are computed using perturbative expansions in powers of \({\epsilon}\) . Our algorithm is closely related to the coupled cluster method used in quantum chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kempe J., Kitaev A., Regev O.: “The Complexity of the Local Hamiltonian Problem”. SIAM J. Computing 35(5), 1070–1097 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Oliveira, R., Terhal, B.M.: “The complexity of quantum spin systems on a two-dimensional square lattice”. http://arXiv.org/list/0504050, 2005, to appear in Quant. Inf. Comput.

  3. Kato T.: “Perturbation Theory for Linear Operators”. Springer-Verlag, New York (1966)

    Google Scholar 

  4. Yarotsky D.: “Perturbations of ground states in weakly interacting quantum spin systems”. J. Math. Phys. 45(6), 2134 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Osborne T.: “Simulating adiabatic evolution of gapped spin systems”. Phys. Rev. A 75, 032321 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  6. Abrikosov A., Gorkov L., Dzyaloshinski I.: “Methods of Quantum Field Theory in Statistical Physics”. Dover Publications Inc., New York (1975)

    Google Scholar 

  7. Lindgren I.: “The Rayleigh-Schrödinger perturbation and the linked-diagram theorem for a multi-configurational model space”. J. Phys. B 7(18), 2441 (1974)

    Article  ADS  Google Scholar 

  8. Kirkwood J., Thomas L.: “Expansions and Phase Transitions for the Ground State of Quantum Ising Lattice Systems”. Commun. Math. Phys. 88, 569–580 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  9. Datta N., Kennedy T.: “Expansions for one quasiparticle states in spin 1/2 systems”. J. Stat. Phys. 108, 373 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lang S.: “Complex Analysis”. Graduate Texts in Mathematics 103. Springer-Verlag, New York (1985)

    Google Scholar 

  11. Anderson P.W.: “Infrared Catastrophe in Fermi Gases with Local Scattering Potentials”. Phys. Rev. Lett. 18, 1049 (1967)

    Article  ADS  Google Scholar 

  12. Verstraete F., Wolf M.M., Perez-Garcia D., Cirac J.I.: “Criticality, the area law, and the computational power of PEPS”. Phys. Rev. Lett. 96, 220601 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  13. Coester F.: “Bound states of a many-particle system”. Nucl. Phys. 7, 421 (1958)

    Article  Google Scholar 

  14. Crawford T., Schaefer H.: “An Introduction to Coupled Cluster Theory for Computational Chemists”. Rev. Comput. Chem. 14, 33–36 (1999)

    Article  Google Scholar 

  15. Farnell, D.J.J., Bishop, R.F.: “The Coupled Cluster Method Applied to the XXZ Model on the Square Lattice”. http://arXiv.org/list/cond-mat/0606060, 2006

  16. Datta N., Fernández R., Fröhlich J.: “Low-temperature phase diagrams of quantum lattice systems. I. Stability for quantum perturbations of classical systems with finitely-many ground states”. J. Stat. Phys. 84, 455–534 (1996)

    Article  MATH  ADS  Google Scholar 

  17. Borgs C., Kotecký R., Ueltschi D.: “Low temperature phase diagrams for quantum perturbations of classical spin systems”. Commun. Math. Phys. 181, 409–446 (1996)

    Article  MATH  ADS  Google Scholar 

  18. Hastings M., Koma T.: “Spectral Gap and Exponential Decay of Correlations”. Commun. Math. Phys. 265, 781 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Bravyi S., Hastings M., Verstraete F.: “Lieb-Robinson bounds and the generation of correlations and topological quantum order”. Phys. Rev. Lett. 97, 050401 (2006)

    Article  ADS  Google Scholar 

  20. Latorre J.I., Rico E., Vidal G.: “Ground state entanglement in quantum spin chains”. Quant. Inf. Comput. 4, 48 (2004)

    MATH  MathSciNet  Google Scholar 

  21. Bravyi, S., DiVincenzo, D.P., Loss, D., Terhal, B.M.: “Simulation of Many-Body Hamiltonians using Perturbation Theory with Bounded-Strength Interactions”. http://arXiv.org/abs/0803.2686, 2008

  22. Bhatia R.: “Matrix Analysis”. Graduate Texts in Mathematics 169. Springer-Verlag, New York (1997)

    Google Scholar 

  23. Aliferis P., Gottesman D., Preskill J.: “Accuracy threshold for postselected quantum computation”. Quant. Inf. Comput. 8, 181 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Bravyi.

Additional information

Communicated by M.B. Ruskai

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bravyi, S., DiVincenzo, D. & Loss, D. Polynomial-Time Algorithm for Simulation of Weakly Interacting Quantum Spin Systems. Commun. Math. Phys. 284, 481–507 (2008). https://doi.org/10.1007/s00220-008-0574-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0574-6

Keywords

Navigation