Skip to main content
Log in

Spatial Random Permutations and Infinite Cycles

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider systems of spatial random permutations, where permutations are weighed according to the point locations. Infinite cycles are present at high densities. The critical density is given by an exact expression. We discuss the relation between the model of spatial permutations and the ideal and interacting quantum Bose gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aldous D., Diaconis P.: Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem. Bull. Amer. Math. Soc. 36, 413–432 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arnold P., Moore G.: BEC Transition Temperature of a Dilute Homogeneous Imperfect Bose Gas. Phys. Rev. Lett. 87, 120401 (2001)

    Article  ADS  Google Scholar 

  3. Baik J., Deift P., Johannson K.: On the distribution of the length of the longest increasing subsequence of random permutations. J. Amer. Math. Soc. 12, 1119–1178 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Betz, V., Ueltschi, D.: In preparation

  5. Boland, G., Pulé, J.V.: Long cycles in the infinite-range-hopping Bose-Hubbard model with hard cores. To appear in JSP, available at http://www.ina.otexas.edu/mp_arc/c/08/08-104, 2008

  6. Buffet E., Pulé J.V.: Fluctuation properties of the imperfect Bose gas. J. Math. Phys. 24, 1608–1616 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  7. Davies E.B.: The thermodynamic limit for an imperfect boson gas. Commun. Math. Phys. 28, 69–86 (1972)

    Article  ADS  Google Scholar 

  8. Ferrari, P., Prähofer, M., Spohn, H.: Stochastic growth in one dimension and Gaussian multi-matrix models, XIVth International Congress on Mathematical Physics, River Edge, NJ: World Scientific, 2005

  9. Feynman R.P.: Atomic theory of the λ transition in Helium. Phys. Rev. 91, 1291–1301 (1953)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Fichtner K.-H.: Random permutations of countable sets. Probab. Th. Rel. Fields 89, 35–60 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gandolfo D., Ruiz J., Ueltschi D.: On a model of random cycles. J. Stat. Phys. 129, 663–676 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Ginibre, J.: Some applications of functional integration in statistical mechanics. In: “Mécanique statistique et théorie quantique des champs”, Les Houches 1970, C. DeWitt, R. Stora, eds. London: Gorden and Breach, 1971, pp. 327–427

  13. Hainzl C., Seiringer R.: General decomposition of radial functions on \({\mathbb{R}^n}\) and applications to N-body quantum systems. Lett. Math. Phys. 61, 75–84 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kashurnikov V.A., Prokof’ev N.V., Svistunov B.V.: Critical temperature shift in weakly interacting Bose gas. Phys. Rev. Lett. 87, 120402 (2001)

    Article  ADS  Google Scholar 

  15. Kastening B.: Bose-Einstein condensation temperature of a homogenous weakly interacting Bose gas in variational perturbation theory through seven loops. Phys. Rev. A 69, 043613 (2004)

    Article  ADS  Google Scholar 

  16. Kikuchi R.: λ transition of liquid Helium. Phys. Rev. 96, 563–568 (1954)

    Article  MATH  ADS  Google Scholar 

  17. Kikuchi R., Denman H.H., Schreiber C.L.: Statistical mechanics of liquid He. Phys. Rev. 119, 1823–1831 (1960)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Lebowitz J.L., Lenci M., Spohn H.: Large deviations for ideal quantum systems. J. Math. Phys. 41, 1224–1243 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Lieb E.H., Seiringer R., Solovej J.P., Yngvason J.: The mathematics of the Bose gas and its condensation, Oberwohlfach Seminars. Birkhäuser, Basel-Boston (2005)

    Google Scholar 

  20. Nho K., Landau D.P.: Bose-Einstein condensation temperature of a homogeneous weakly interacting Bose gas: Path integral Monte Carlo study. Phys. Rev. A 70, 053614 (2004)

    Article  ADS  Google Scholar 

  21. Okounkov A.: Random matrices and random permutations. Internat. Math. Res. Notices 20, 1043–1095 (2000)

    Article  MathSciNet  Google Scholar 

  22. Okounkov, A.: The uses of random partitions. In Proc. of XIVth International Congress on Mathematical Physics, River Edge, NJ: World Scientific, 2005, pp. 379–403

  23. Penrose O., Onsager L.: Bose-Einstein condensation and liquid Helium. Phys. Rev. 104, 576 (1956)

    Article  MATH  ADS  Google Scholar 

  24. Pollock E.L., Ceperley D.M.: Path-integral computation of superfluid densities. Phys. Rev. B 36, 8343–8352 (1987)

    Article  ADS  Google Scholar 

  25. Sütő A.: Percolation transition in the Bose gas. J. Phys. A 26, 4689–4710 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  26. Sütő A.: Percolation transition in the Bose gas II. J. Phys. A 35, 6995–7002 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  27. Ueltschi D.: Feynman cycles in the Bose gas. J. Math. Phys. 47, 123302 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  28. Ueltschi D.: Relation between Feynman cycles and off-diagonal long-range order. Phys. Rev. Lett. 97, 170601 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  29. Ueltschi, D.: The model of interacting spatial permutations and its relation to the Bose gas. http://arxiv.org.abs/0712.2443, v3 [cond-mat, stat-mech], 2007

  30. Zagrebnov V.A., Bru J.-B.: The Bogoliubov model of weakly imperfect Bose gas. Phys. Reports 350, 291–434 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Ueltschi.

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and permissions

About this article

Cite this article

Betz, V., Ueltschi, D. Spatial Random Permutations and Infinite Cycles. Commun. Math. Phys. 285, 469–501 (2009). https://doi.org/10.1007/s00220-008-0584-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0584-4

Keywords

Navigation