Skip to main content
Log in

Continuity of Eigenfunctions of Uniquely Ergodic Dynamical Systems and Intensity of Bragg Peaks

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study uniquely ergodic dynamical systems over locally compact, sigma-compact Abelian groups. We characterize uniform convergence in Wiener/Wintner type ergodic theorems in terms of continuity of the limit. Our results generalize and unify earlier results of Robinson and Assani respectively.

We then turn to diffraction of quasicrystals and show how the Bragg peaks can be calculated via a Wiener/Wintner type result. Combining these results we prove a version of what is sometimes known as the Bombieri/Taylor conjecture.

Finally, we discuss various examples including deformed model sets, percolation models, random displacement models, and linearly repetitive systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allouche, J.-P., Mendés France, M.: Automata and automatic sequences. In: Beyond quasicrystals (Les Houches, 1994), Berlin:Springer 1995, pp. 293–367

  2. Assani, I.: Wiener Wintner ergodic theorems. River Edge, NJ: World Scientific Publishing Co., Inc., 2003

  3. Baake M., Lenz D.: Dynamical systems on translation bounded measures: Pure point dynamical and diffraction spectra. Ergodic Th. & Dynam. Syst. 24(6), 1867–1893 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Baake M., Lenz D.: Deformation of Delone dynamical systems and pure point diffraction. J. Fourier Anal. Appl. 11(2), 125–150 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Baake M., Lenz D., Moody R.V.: A characterization of model sets by dynamical systems. Ergodic Th. & Dynam, Syst. 27, 341–382 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Baake, M., Moody, R. V. (eds.): Directions in Mathematical Quasicrystals, CRM Monograph Series, Vol. 13, Providence, RI: Amer. math. Soc., (2000)

  7. Baake, M., Moody, R.V., Richard, C., Sing, B.: Which distribution of matter diffracts? Quasicrystals: Structure and Physical Properties ed: H.-R. Trebin, Berlin: Wiley-VCH, 2003, pp. 188–207

  8. Bak P.: Icosahedral crystals from cuts in six-dimensional space. Scripta Met. 20, 1199–1204 (1986)

    Article  Google Scholar 

  9. Bernuau, G., Duneau, M.: Fourier analysis of deformed model sets. In: [6], pp. 43–60

  10. Bombieri, E., Taylor, J.E.: Which distributions of matter diffract? An initial investigation. International workshop on aperiodic crystals (Les Houches, 1986), J. Physique 47, no. 7, Suppl. Colloq. C3, C3-19–C3-28, (1986)

  11. Bombieri, E., Taylor, J.E.: Quasicrystals, Tilings and Algebraic numbers. In: Contemporary Mathematics 64, Providence, RI: Amer. Math. Soc., 1987, pp. 241–264

  12. Bressaud X., Durand F., Maass A.: Necessary and sufficient conditions to be an eigenvalue for linearly recurrent dynamical cantor systems. J. London Math. Soc. 72, 799–816 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cortez M.I., Durand F., Host B., Maass A.: Continuous and measurable eigenfunctions of linearly recurrent dynamical Cantor systems. J. London Math. Soc. 67, 790–804 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Cowley J.M.: Diffraction Physics 3rd ed. North-Holland, Amsterdam (1995)

    Google Scholar 

  15. Damanik D., Lenz D.: Linear repetitivity. I. Uniform subadditive ergodic theorems and applications. Discrete Comput. Geom. 26(3), 411–428 (2001)

    MATH  MathSciNet  Google Scholar 

  16. Durand F.: Linearly recurrent subshifts have a finite number of non-periodic subshift factors. Ergod. Th. & Dynam. Syst. 20, 1061–1078 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dworkin S.: Spectral theory and X-ray diffraction. J. Math. Phys. 34, 2965–2967 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  18. van Enter A.C.D., Miȩkisz J.: How should one define a (weak) crystal?. J. Stat. Phys. 66, 1147–1153 (1992)

    Article  MATH  ADS  Google Scholar 

  19. Furman A.: On the multiplicative ergodic theorem for uniquely ergodic ergodic systems. Ann. Inst. Henri Poincaré Probab. Statist. 33, 797–815 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gähler, F., Klitzing, R.: The diffraction pattern of self-similar tilings. In: The mathematics of long-range aperiodic order (Waterloo, ON, 1995), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 489, Dordrecht: Kluwer Acad. Publ., 1997, pp. 141–174

  21. Gil de Lamadrid, J., Argabright, L. N.: Almost Periodic Measures. Memoirs of the AMS, Vol. 428, Providence, RI: Amer. Math. Soc., 1990

  22. Gouéré J.-B.: Quasicrystals and almost periodicity. Commun. Math. Phys. 255, 655–681 (2005)

    Article  MATH  ADS  Google Scholar 

  23. Hof A.: On diffraction by aperiodic structures. Commun. Math. Phys. 169, 25–43 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Hof A.: Diffraction by aperiodic structures at high temperatures. J. Phys. A 28, 57–62 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Hof, A.: Diffraction by aperiodic structures. In: [6], pp. 239–268

  26. Hof A.: Percolation on Penrose tilings. Canad. Math. Bull. 41, 166–177 (1998)

    MATH  MathSciNet  Google Scholar 

  27. Host B.: Valeurs propres des systèmes dynamiques définis par des substitutions de longueur variable. Ergodic Th. Dynam. Sys. 6, 529–540 (1986)

    MATH  MathSciNet  Google Scholar 

  28. Ishimasa T., Nissen H.U., Fukano Y.: New ordered state between crystalline and amorphous in Ni-Cr particles. Phys. Rev. Lett. 55, 511–513 (1985)

    Article  ADS  Google Scholar 

  29. Janot, C.: Quasicrystals, A Primer. Monographs on the Physics and Chemestry of Materials, Oxford: Oxford University Press, 1992

  30. Külske C.: Universal bounds on the selfaveraging of random diffraction measures. Probab. Theory Related Fields 126, 29–50 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  31. Külske C.: Concentration inequalities for functions of Gibbs fields with application to diffraction and random Gibbs measures. Commun. Math. Phys. 239, 29–51 (2003)

    Article  MATH  ADS  Google Scholar 

  32. Krengel U.: Ergodic Theorems. de Gruyter, Berlin (1985)

    MATH  Google Scholar 

  33. Lagarias, J.: Mathematical quasicrystals and the problem of diffraction. in [6], pp. 61–93

  34. Lagarias J., Pleasants P.A.B.: Repetitive Delone sets and quasicrystals. Ergodic Theory Dynam. Systems 23(3), 831–867 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  35. Lenz D.: Uniform ergodic theorems on subshifts over a finite alphabet. Ergodic Theory Dynam. Systems 22, 245–255 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  36. Lenz, D.: Diffraction and long range order. Summary of an overview talk given at the conference “Quasicrystals - The Silver Jubilee”, Tel Aviv 2007

  37. Lenz D., Richard C.: Pure point diffraction and cut and project schemes for measures: The smooth case. Math. Z. 256, 347–378 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  38. Lenz, D., Strungaru, N.: Pure point spectrum for measure dyamical systems on locally compact Abelian groups. http://arxiv.org/abs/0704.2498VI [math-ph], 2007

  39. Lindenstrauss E.: Pointwise theorems for amenable groups. Invent. Math. 146(2), 259–295 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  40. Lee J.-Y., Moody R.V., Solomyak B.: Pure point dynamical and diffraction spectra. Annales Henri Poincaré 3, 1003–1018 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  41. Lee J.-Y., Moody R.V., Solomyak B.: Consequences of pure point diffraction spectra for multiset substitution systems. Discr. Comput. Geom. 29, 525–560 (2003)

    MATH  MathSciNet  Google Scholar 

  42. Loomis L.H.: An Introduction to Abstract Harmonic Analysis. Princeton, NJ, Van Nostrand (1953)

    MATH  Google Scholar 

  43. Lothaire, M.: Combinatorics on words. In: Encyclopedia of Mathematics and Its Applications, 17, Reading, MA: Addison-Wesley, 1983

  44. Meyer, Y.: Algebraic numbers and harmonic analysis. North-Holland Mathematical Library, Vol. 2. Amsterdam-London: North-Holland Publishing Co., New York: American Elsevier Publishing Co., Inc., 1972

  45. Moody, R. V. (ed.): The Mathematics of Long-Range Aperiodic Order. NATO ASI Series C 489, Dordrecht: Kluwer, 1997

  46. Moody, R.V.: Model sets: A Survey. In: From Quasicrystals to More Complex Systems, eds. Axel F., Dénoyer F., Gazeau J.P. Les Ulis: EDP Sciences, Berlin: Springer, 2000, pp. 145–166

  47. Moody R.V.: Uniform distribution in model sets. Can. Math. Bulletin 45, 123–130 (2002)

    MATH  MathSciNet  Google Scholar 

  48. Moody, R.V.: Long range order and diffraction. In: Proceedings of a Conference on Groups and Lie Algebras, Shinoda K, ed Sophia Kokyuroku in Mathematics 46, 2006

  49. Moody R.V., Strungaru N.: Point sets and dynamical systems in the autocorrelation topology. Canad. Math. Bull. 47, 82–99 (2004)

    MATH  MathSciNet  Google Scholar 

  50. Mueller, P., Richard, C.: Random colourings of aperiodic graphs: Ergodic and spectral properties. http://arxiv.org/abs/0709.0821VI [math. SP], 2007

  51. Patera, J. (ed.): Quasicrystals and Discrete Geometry, Fields Institute Monographs, Vol. 10, Providence, RI: Amer. Math. Soc., 1998

  52. Pedersen, G. K.: Analysis Now. New York: Springer, 1989, rev. printing, 1995

  53. Queffélec, M.: Substitution Dynamical Systems – Spectral Analysis. Lecture Notes in Mathematics 1294, Berlin-Heidelberg/New York: Springer, 1987

  54. Radin, C.: Miles of Tiles. In: Ergodic theory of Z d-actions, London Math. Soc. Lecture Notes Ser. 228, Cambridge: Cambridge Univ Press, 1996, pp. 237–258

  55. Radin C., Wolff M.: Space tilings and local isomorphism. Geom. Dedicata 42(3), 355–360 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  56. Richard C.: Dense Dirac combs in Euclidean space with pure point diffraction. J. Math. Phys. 44, 4436–4449 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  57. Robinson E.A.: On uniform convergence in the Wiener-Wintner theorem. J. London Math. Soc. 49, 493–501 (1994)

    MATH  MathSciNet  Google Scholar 

  58. Robinson E.A.: The dynamical properties of Penrose tilings. Trans. Amer. Math. Soc. 348, 4447–4464 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  59. Senechal M.: Quasicrystals and geometry. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  60. Shechtman D., Blech I., Gratias D., Cahn J.W.: Metallic phase with long-range orientational order and no translation symmetry. Phys. Rev. Lett. 53, 183–185 (1984)

    Article  Google Scholar 

  61. Schlottmann, M.: Cut-and-project sets in locally compact Abelian groups. In: [51] pp. 247–264

  62. Schlottmann, M.: Generalized model sets and dynamical systems. In: [6], pp. 143–159

  63. Solomyak, B.: Spectrum of dynamical systems arising from Delone sets. In: [51], pp. 265–275

  64. Solomyak, B.: Dynamics of self-similar tilings. Ergodic Th. & Dynam. Syst. 17, 695–738 (1997); Erratum: Ergodic Th. & Dynam. Syst. 19, 1685 (1999)

  65. Solomyak B.: Nonperiodicity implies unique composition for self-similar translationally finite tilings. Discrete Comput. Geom. 20, 265–279 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  66. Solomyak B.: Eigenfunctions for substitution tiling systems. Adv. Stud. Pure Math. 43, 1–22 (2006)

    Google Scholar 

  67. Strungaru N.: Almost periodic measures and long-range order in Meyer sets. Discrete Comput. Geom. 33, 483–505 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  68. Suck, J.-B., Häussler, P., Schreiber, M. (eds): Quasicrystals. Springer, Berlin (2002)

    Google Scholar 

  69. Trebin, H.-R. (eds): Quasicrystals – Structure and Physical Properties. Weinheim, Wiley-VCH (2003)

    Google Scholar 

  70. Wiener N., Wintner A.: On the ergodic dynamics of almost periodic systems. Amer. J. Math. 63, 794–824 (1941)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Lenz.

Additional information

Communicated by J.L. Lebowitz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenz, D. Continuity of Eigenfunctions of Uniquely Ergodic Dynamical Systems and Intensity of Bragg Peaks. Commun. Math. Phys. 287, 225–258 (2009). https://doi.org/10.1007/s00220-008-0594-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0594-2

Keywords

Navigation