Skip to main content
Log in

Counterexamples to the Maximal p-Norm Multiplicativity Conjecture for all p > 1

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

For all p > 1, we demonstrate the existence of quantum channels with non-multiplicative maximal output p-norms. Equivalently, for all p > 1, the minimum output Rényi entropy of order p of a quantum channel is not additive. The violations found are large; in all cases, the minimum output Rényi entropy of order p for a product channel need not be significantly greater than the minimum output entropy of its individual factors. Since p = 1 corresponds to the von Neumann entropy, these counterexamples demonstrate that if the additivity conjecture of quantum information theory is true, it cannot be proved as a consequence of any channel-independent guarantee of maximal p-norm multiplicativity. We also show that a class of channels previously studied in the context of approximate encryption lead to counterexamples for all p > 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Schumacher B.: Quantum coding. Phys. Rev. A 51, 2738–2747 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  2. Jozsa R., Schumacher B.: A new proof of the quantum noiseless coding theorem. J. Mod. Opt. 41, 2343–2349 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Pierce J.: The early days of information theory. IEEE Transactions on Information Theory 19(1), 3–8 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  4. Gordon, J.P.: Noise at optical frequencies; information theory. In: Miles P.A. ed., Quantum electronics and coherent light; Proceedings of the international school of physics Enrico Fermi, Course XXXI, New York: Academic Press, 1964 pp. 156–181

  5. Holevo, A.S.: Information theoretical aspects of quantum measurements. Probl. Info. Transm. (USSR), 9(2), 31–42 (1973). Translation: Probl. Info. Transm. 9, 177–183 (1973)

  6. Hausladen P., Jozsa R., Schumacher B., Westmoreland M., Wootters W.K.: Classical information capacity of a quantum channel. Phys. Rev. A 54, 1869–1876 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  7. Holevo A.S.: The capacity of the quantum channel with general signal states. IEEE Trans. Inf. Theory 44, 269–273 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Schumacher B., Westmoreland M.D.: Sending classical information via noisy quantum channels. Phys. Rev. A 56, 131–138 (1997)

    Article  ADS  Google Scholar 

  9. Shor P.W.: Equivalence of additivity questions in quantum information theory. Commun. Math. Phys. 246, 453–472 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Pomeransky A.A.: Strong superadditivity of the entanglement of formation follows from its additivity. Physical Review A 68(3), 032317 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  11. Audenaert K.M.R., Braunstein S.L.: On strong superadditivity of the entanglement of formation. Commun. Math. Phys. 246, 443–452 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Matsumoto K., Shimono T., Winter A.: Remarks on additivity of the Holevo channel capacity and of the entanglement of formation. Commun. Math. Phys. 246, 427–442 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Bennett C.H., DiVincenzo D.P., Smolin J.A., Wootters W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  14. Hayden P.M., Horodecki M., Terhal B.M.: The asymptotic entanglement cost of preparing a quantum state. J. Phys. A: Math. Gen. 34, 6891–6898 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Vidal G., Dür W., Cirac J.I.: Entanglement cost of bipartite mixed states. Phys. Rev. Lett. 89(2), 027901 (2002)

    Article  ADS  Google Scholar 

  16. Matsumoto K., Yura F.: Entanglement cost of antisymmetric states and additivity of capacity of some quantum channels. J. Phys. A: Math. Gen. 37, L167–L171 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Vollbrecht K.G.H., Werner R.F.: Entanglement measures under symmetry. Phys. Rev. A 64(6), 062307 (2001)

    Article  ADS  Google Scholar 

  18. King C., Ruskai M.B.: Minimal entropy of states emerging from noisy quantum channels. IEEE Trans. Inf. Th. 47(1), 192–209 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Osawa S., Nagaoka H.: Numerical experiments on the capacity of quantum channel with entangled input states. IEICE Trans. Fund. Elect., Commun. and Comp. Sci. E84(A10), 2583–2590 (2001)

    Google Scholar 

  20. Amosov G.G., Holevo A.S., Werner R.F.: On some additivity problems of quantum information theory. Probl. Inform. Transm. 36(4), 25 (2000)

    Google Scholar 

  21. Amosov, G.G., Holevo, A.S.: On the multiplicativity conjecture for quantum channels. http://arxiv.org/list/:math-ph/0103015, 2001

  22. King C.: Additivity for unital qubit channels. J. Math. Phys. 43(10), 4641–4643 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Fujiwara A., Hashizumé T.: Additivity of the capacity of depolarizing channels. Phys. Lett. A 299, 469–475 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. King C.: The capacity of the quantum depolarizing channel. IEEE Trans. Inf. Th. 49(1), 221–229 (2003)

    Article  MATH  Google Scholar 

  25. Holevo A.S.: Quantum coding theorems. Russ. Math. Surv. 53, 1295–1331 (1998)

    Article  MATH  Google Scholar 

  26. King, C.: Maximization of capacity and p-norms for some product channels. http://arxiv.org/list/:quant-ph/0103086, 2001

  27. Shor P.W.: Additivity of the classical capacity of entanglement-breaking quantum channels. J. Math. Phys. 43, 4334–4340 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Devetak I., Shor P.W.: The capacity of a quantum channel for simultaneous transmission of classical and quantum information. Commun. Math. Phys. 256, 287–303 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. King, C., Matsumoto, K., Nathanson, M., Ruskai, M.B.: Properties of conjugate channels with applications to additivity and multiplicativity. http://arxiv.org/list/:quant-ph/0509126, 2005., to appear in special issue of Markov processes and Related Fields in memory of J.F. leuis

  30. Cortese J.: Holevo-Schumacher-Westmoreland channel capacity for a class of qudit unital channels. Phys. Rev. A 69(2), 022302 (2004)

    Article  ADS  Google Scholar 

  31. Datta, N., Holevo, A.S., Suhov, Y.M.: A quantum channel with additive minimum output entropy. http://arxiv.org/list/:quant-ph/0403072, 2004

  32. Fukuda M.: Extending additivity from symmetric to asymmetric channels. J. Phys. A: Math. Gen. 38, L753–L758 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. Holevo, A.S.: Additivity of classical capacity and related problems. Available online at: http://www.imaph.tu-bs.de/qi/problems/10.pdf, 2004

  34. Holevo, A.S.: The additivity problem in quantum information theory. In: Proceedings of the International Congress of Mathematicians, (Madrid, Spain, 2006), Zurich:Publ. EMS, 2007, pp. 999–1018

  35. King C., Ruskai M.B.: Comments on multiplicativity of maximal p-norms when p = 2. Quantum Inf. and Comput. 4, 500–512 (2004)

    MATH  MathSciNet  Google Scholar 

  36. King C., Nathanson M., Ruskai M.B.: Multiplicativity properties of entrywise positive maps. Linear alge. Applications. 404, 367–379 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  37. Serafini A., Eisert J., Wolf M.M.: Multiplicativity of maximal output purities of Gaussian channels under Gaussian inputs. Phys. Rev. A 71(1), 012320 (2005)

    Article  ADS  Google Scholar 

  38. Giovannetti V., Lloyd S.: Additivity properties of a Gaussian channel. Phys. Rev. A 69, 062307 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  39. Devetak I., Junge M., King C., Ruskai M.B.: Multiplicativity of completely bounded p-norms implies a new additivity result. Commun. Math. Phys. 266, 37–63 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  40. Michalakis, S.: Multiplicativity of the maximal output 2-norm for depolarized Werner-Holevo channels. http://arxiv.org/list/:0707.1722, 2007

  41. Werner R.F., Holevo A.S.: Counterexample to an additivity conjecture for output purity of quantum channels. J. Math. Phys. 43, 4353–4357 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  42. Alicki R., Fannes M.: Note on multiple additivity of minimal Renyi entropy output of the Werner-Holevo channels. Open Syst. Inf. Dyn. 11(4), 339–342 (2005)

    Article  MathSciNet  Google Scholar 

  43. Datta, N.: Multiplicativity of maximal p-norms in Werner-Holevo channels for 1 < p < 2. http://arxiv.org/list/:quant-ph/0410063, 2004

  44. Giovannetti V., Lloyd S., Ruskai M.B.: Conditions for multiplicativity of maximal p -norms of channels for fixed integer p. J. Math. Phys. 46, 042105 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  45. Winter, A.: The maximum output p-norm of quantum channels is not multiplicative for any p > 2. http://arxiv.org/abs/:0707.0402, 2007

  46. Hayden, P.: The maximal p-norm multiplicativity conjecture is false. arXiv.org:0707.3291, 2007

  47. Hayden P., Leung D., Shor P.W., Winter A.: Randomizing Quantum States: Constructions and Applications. Commun. Math. Phys. 250, 371–391 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  48. Aubrun, G.: On almost randomizing channels with a short Kraus decomposition. http://arxiv.org/abs/:0805.2900v2, 2008

  49. Paulsen, V.I.: Completely bounded maps and dilations. New York: Longman Scientific and Technical, 1986

  50. Hayden P., Leung D.W., Winter A.: Aspects of generic entanglement. Commun. Math. Phys. 265, 95–117 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  51. Bennett C.H., Hayden P., Leung D.W., Shor P.W., Winter A.: Remote preparation of quantum states. IEEE Trans. Inf. Th. 51(1), 56–74 (2005)

    Article  MathSciNet  Google Scholar 

  52. Geman S.: A Limit Theorem for the Norm of Random Matrices. Ann. Prob. 8(2), 252–261 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  53. Johnstone I.M.: On the distribution of the largest eigenvalue in principal components analysis. Ann. Stat. 29(2), 295–327 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  54. Davidson, K.R., Szarek, S.J.: Local Operator Theory, Random Matrices and Banach Spaces. In: Johnson W.B., Lindenstrauss J. eds., Handbook of the Geometry of Banach Spaces, Vol. I, Chap. 8, London:Elsevier, 2001, pp. 317–366

  55. Ledoux, M.: The concentration of measure phenomenon, Vol. 89 of Mathematical Surveys and Monographs. Providence, RI: American Mathematical Society, 2001

  56. King C.: Maximal p-norms of entanglement breaking channels. Quantum Inf. and Comp. 3(2), 186–190 (2003)

    MATH  Google Scholar 

  57. Wolf M.M., Eisert J.: Classical information capacity of a class of quantum channels. New J. Phys. 7, 93 (2005)

    Article  ADS  Google Scholar 

  58. Cubitt, T., Harrow, A.W., Leung, D., Montanaro, A., Winter, A.: Counterexamples to additivity of minimum output p-Rényi entropy for p close to 0. http://arxiv.org/abs/:0712.3628v2, 2007, Commun. Math. Phys. doi:10.1007/s00220-008-0625-z

  59. Ambainis, A., Smith, A.: Small pseudo-random families of matrices: Derandomizing approximate quantum encryption. In: Proc. RANDOM, LNCS 3122, Berlin-Heidelberg-NewYork: Springer, 2004, pp. 249–260

  60. Ben-Aroya, A., Ta-Shma, A.: Quantum expanders and the quantum entropy difference problem. http://arxiv.org/abs/:quant-ph/0702129, 2007

  61. Hastings M.B.: Random unitaries give quantum expanders. Phys. Rev. A 76, 032315 (2007)

    Article  ADS  Google Scholar 

  62. Pérez-García D., Wolf M.M., Palazuelos C., Villanueva I., Junge M.: Unbounded Violation of Tripartite Bell Inequalities. Commun. Math. Phys. 279(2), 455–486 (2008)

    Article  ADS  Google Scholar 

  63. Aubert S., Lam C.S.: Invariant integration over the unitary group. J. Math. Phys. 44, 6112–6131 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  64. Aubert S., Lam C.S.: Invariant and group theoretical integrations over the U(n) group. J. Math. Phys. 45, 3019–3039 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  65. Collins B., Śniady P.: Integration with respect to the Haar measure on unitary, orthogonal and symplectic group. Commun. Math. Phys. 264, 773–795 (2006)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Winter.

Additional information

Communicated by M.B. Ruskai

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayden, P., Winter, A. Counterexamples to the Maximal p-Norm Multiplicativity Conjecture for all p > 1. Commun. Math. Phys. 284, 263–280 (2008). https://doi.org/10.1007/s00220-008-0624-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0624-0

Keywords

Navigation