Skip to main content
Log in

Conformal Radii for Conformal Loop Ensembles

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The conformal loop ensembles CLE κ , defined for 8/3 ≤ κ ≤ 8, are random collections of loops in a planar domain which are conjectured scaling limits of the O(n) loop models. We calculate the distribution of the conformal radii of the nested loops surrounding a deterministic point. Our results agree with predictions made by Cardy and Ziff and by Kenyon and Wilson for the O(n) model. We also compute the expectation dimension of the CLE κ gasket, which consists of points not surrounded by any loop, to be

$$2 - \frac{{(8 - \kappa)(3\kappa - 8)}}{{32\kappa}}$$

, which agrees with the fractal dimension given by Duplantier for the O(n) model gasket.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borodin, A.N., Salminen, P.: Handbook of Brownian Motion—Facts and Formulae. Probability and its Applications. Basel: Birkhäuser Verlag, 2nd edition, 2002

  2. Cardy J. (2007) ADE and SLE. J. Phys. A 40(7): 1427–1438

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Camia F., Newman C.M. (2006) Two-dimensional critical percolation: the full scaling limit. Commun. Math. Phys. 268(1): 1–38

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Camia F., Newman C.M. (2007) Critical percolation exploration path and SLE6: a proof of convergence. Probab. Theory Related Fields 139(3-4): 473–519

    Article  MATH  MathSciNet  Google Scholar 

  5. Ciesielski Z., Taylor S.J. (1962) First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path. Trans. Amer. Math. Soc. 103(3): 434–450

    Article  MATH  MathSciNet  Google Scholar 

  6. Cardy J., Ziff R.M. (2003) Exact results for the universal area distribution of clusters in percolation, Ising, and Potts models. J. Stat. Phys. 110(1-2): 1–33

    Article  MATH  MathSciNet  Google Scholar 

  7. Dubédat, J.: 2005, Personal communication

  8. Duplantier B. (1990) Exact fractal area of two-dimensional vesicles. Phys. Rev. Lett. 64(4): 493

    Article  ADS  Google Scholar 

  9. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions. Vol. I., New York: McGraw-Hill Book Company, 1953, based, in part, on notes left by Harry Bateman

  10. Fortuin C.M., Kasteleyn P.W. (1972) On the random-cluster model. I. Introduction and relation to other models. Physica 57: 536–564

    Article  ADS  MathSciNet  Google Scholar 

  11. Grimmett, G.: The Random-Cluster Model, Volume 333 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Berlin: Springer-Verlag, (2006)

  12. Kager W., Nienhuis B. (2004) A guide to stochastic Löwner evolution and its applications. J. Stat. Phys. 115(5-6): 1149–1229

    Article  ADS  MathSciNet  Google Scholar 

  13. Kenyon, R.W., Wilson, D.B.: Conformal radii of loop models, 2004. Manuscript

  14. Lawler, G.F., Schramm, O., Werner, W.: One-arm exponent for critical 2D percolation. Electron. J. Probab. 7: Paper No. 2, 13 pp. (2002)

  15. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, Volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Berlin: Springer-Verlag, third edition, 1999

  16. Schramm O. (2001) A percolation formula. Electron. Comm. Probab. 6: 115–120

    MathSciNet  Google Scholar 

  17. Sheffield, S.: Exploration trees and conformal loop ensembles. http://arxiv.org/abs/math.PR/0609167, 2006 Duke Math. J., to appear

  18. Smirnov S. (2001) Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math. 333(3): 239–244

    MATH  ADS  Google Scholar 

  19. Sheffield, S., Werner, W.: Conformal loop ensembles: Construction via loop-soups, 2008, in preparation

  20. Sheffield, S., Werner, W.: Conformal loop ensembles: The Markovian characterization, 2008, in preparation

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. Aizenman

Partially supported by NSF grant DMS0403182.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schramm, O., Sheffield, S. & Wilson, D.B. Conformal Radii for Conformal Loop Ensembles. Commun. Math. Phys. 288, 43–53 (2009). https://doi.org/10.1007/s00220-009-0731-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0731-6

Keywords

Navigation