Skip to main content
Log in

Spectral Gap and Transience for Ruelle Operators on Countable Markov Shifts

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We find a necessary and sufficient condition for the Ruelle operator of a weakly Hölder continuous potential on a topologically mixing countable Markov shift to act with spectral gap on some rich Banach space. We show that the set of potentials satisfying this condition is open and dense for a variety of topologies. We then analyze the complement of this set (in a finer topology) and show that among the three known obstructions to spectral gap (weak positive recurrence, null recurrence, transience), transience is open and dense, and null recurrence and weak positive recurrence have empty interior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aaronson J., Denker M., Urbanski F.: Ergodic theory for Markov fibred systems and parabolic rational maps. Trans. Amer. Math. Soc. 337(2), 495–548 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aaronson J.: An introduction to infinite ergodic theory. Math. Surv. and Monog. 50, Providence. Amer. Math. Soc., Providence, RI (1997)

    Google Scholar 

  3. Aaronson J., Denker M.: Local limit theorems for Gibbs–Markov maps. Stochastics Dyn. 1, 193–237 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Baladi V.: Positive Transfer Operators and Decay of Correlations. Advanced Series in Nonlinear Dynamics 16. Singapore, World Scientific (2000)

    Google Scholar 

  5. Buzzi J., Sarig O.: Uniqueness of equilibrium measures for countable Markov shifts and multi-dimensional piecewise expanding maps. Erg. Thy. Dynam. Sys. 23, 1383–1400 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Doeblin W., Fortet R.: Sur des chaînes à liasions complètes. Bull. Soc. Math. France 65, 132–148 (1937)

    MathSciNet  Google Scholar 

  7. Gallavotti G., Miracle-Sole S.: Statistical mechanics of lattice systems. Commun. Math. Phys. 5(5), 317–323 (1967)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Gouëzel S.: Central limit theorem and stable laws for intermittent maps. Probab. Theory Rel. Fields 128(1), 82–122 (2004)

    Article  MATH  Google Scholar 

  9. Gouëzel S.: Regularity of coboundaries for nonuniformly expanding Markov maps. Proc. Amer. Math. Soc. 134(2), 391–401 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Guivarc’h Y., Hardy J.: Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d’Anosov. (In French, English summary) [Limit theorems for a class of Markov chains and applications to Anosov diffeomorphisms] Ann. Inst. H. Poincaré Probab. Statist. 24(1), 73–98 (1988)

    MATH  MathSciNet  Google Scholar 

  11. Gurevich, B.M., Savchenko, S.V.: Thermodynamics formalism for countable Markov chains. Usp Mat. Nauk 53, 2, 3–106 (1998). Engl. transl. in Russ. Math. Surv. 53:2 3–106 (1998)

  12. Hennion H., Hervé L.: Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi–compactness, LNM 1766. Springer, Berlin Heidelberg-New York (2001)

    Book  Google Scholar 

  13. Kato, T.: Perturbation theory for linear operators. Reprint of the 1980 edition. Classics in Mathematics. Berlin: Springer-Verlag, 1995

  14. Ledrappier F.: Principe variationnel et systemes dynamiques symboliques. Z. Wahrs. Verb. Geb. 30, 185–202 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  15. Liverani, C.: Central limit theorem for deterministic systems. International Conference on Dynamical Systems (Montevideo, 1995), Pitman Res. Notes Math. Ser. 362, Harlow: Longman, 1996, pp. 56–75

  16. Lopes A.: The zeta function, nondifferentiability of pressure, and the critical exponent of transition. Adv. Math. 101(2), 133–165 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  17. Parry W.: Entropy and generators in ergodic theory. W.A. Benjamin Inc., New York (1969)

    MATH  Google Scholar 

  18. Parry, W.: Pollicott, M.: Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque 187–8 (1990)

  19. Prellberg T., Slawny J.: Maps of intervals with indifferent fixed points: thermodynamic formalism and phase transitions. J. Stat. Phys. 66(1–2), 503–514 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Ruelle D.: Thermodynamic formalism. The mathematical structures of equilibrium statistical mechanics. Second Edition. Cambridge Univ. Press, Cambridge (2004)

    Google Scholar 

  21. Ruette S.: On the Vere-Jones classification and existence of maximal measures for countable topological Markov chains. Pacific J. Math. 209(2), 365–380 (2003)

    Article  MathSciNet  Google Scholar 

  22. Sarig O.: Thermodynamic formalism for countable Markov shifts. Erg. Th. Dynam. Syst. 19, 1565–1593 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sarig O.: Thermodynamic formalism for null recurrent potentials. Israel J. Math. 121, 285–311 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sarig O.: Phase transitions for countable Markov shifts. Commun. Math. Phys. 217, 555–577 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Sarig O.: Subexponential decay of correlations. Invent. Math. 150, 629–653 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Sarig O.: Critical exponents for dynamical systems. Commun. Math. Phys. 267, 631–667 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Vere–Jones D.: Geometric ergodicity in denumerable Markov chains. Quart. J. Math. Oxford 13(2), 7–28 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  28. Young L.-S.: Statistical properties of dynamical systems with some hyperbolicity. Ann. Math. 147(2), 585–650 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omri Sarig.

Additional information

Communicated by G. Gallavotti

O.S. was partially supported by an NSF grant DMS-0652966 and by an Alfred P. Sloan Research Fellowship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cyr, V., Sarig, O. Spectral Gap and Transience for Ruelle Operators on Countable Markov Shifts. Commun. Math. Phys. 292, 637–666 (2009). https://doi.org/10.1007/s00220-009-0891-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0891-4

Keywords

Navigation