Skip to main content
Log in

On the Fundamental Solution of a Linearized Homogeneous Coagulation Equation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We describe the fundamental solution of the equation that is obtained by linearization of the coagulation equation with kernel K(x, y) = (xy)λ/2, around the steady state f(x) = x −(3+λ)/2 with \({\lambda \in (1, 2)}\) . Detailed estimates on its asymptotics are obtained. Some consequences are deduced for the flux properties of the particles distributions described by such models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz M., Stegun I.: Handbook of Mathematical Functions. Dover Publications, Inc., New York (1972)

    MATH  Google Scholar 

  2. Balk, A.M., Zakharov, V.E.: Stability of Weak-Turbulence Kolmogorov Spectra. In: Zakharov, V.E. (ed.), Nonlinear Waves and Weak Turbulence, A. M. S. Translations Series 2, Vol. 182, Providence, RI: Amer. Math. Soc., 1998, pp. 1–81

  3. Carr J., da Costa F.P.: Instantaneous gelation in coagulation dynamics. Z. Angew. Math. Phys. 43, 974–983 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. van Dongen P.G.J., Ernst M.H.: Cluster size distribution in irreversible aggregation at large times. J. Phys. A 18, 2779–2793 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  5. van Dongen P.G.J., Ernst M.H.: Scaling solutions of Smoluchowski’s coagulation equation. J. Stat. Phys. 50, 295–329 (1988)

    Article  MATH  ADS  Google Scholar 

  6. van Dongen P.G.J.: On the possible occurrence of instantaneous gelation in Smoluchowski’s coagulation equation. J. Phys. A: Math. Gen. 20, 1889–1904 (1987)

    Article  ADS  Google Scholar 

  7. Dubovski P.B., Stewart I.W.: Existence, Uniqueness and Mass Conservation for the Coagulation- Fragmentation Equation. Math. Meth. Appl. Sciences 19, 571–591 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  8. Ernst M.H., Ziff R.M., Hendriks E.M.: Coagulation processes with a phase transition. J. Colloid and Interface Sci. 97, 266–277 (1984)

    Article  Google Scholar 

  9. Escobedo M., Mischler S., Perthame B.: Gelation in coagulation and fragmentation models. Commun. Math. Phys. 231(1), 157–188 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Escobedo M., Mischler S., Velázquez J.J.L.: On the fundamental solution of the linearized Uehling-Uhlenbeck equation. Arch. Rat. Mech. Anal. 186, 309–349 (2007)

    Article  MATH  Google Scholar 

  11. Escobedo M., Mischler S., Velázquez J.J.L.: Singular Solutions for the Uehling Uhlenbeck Equation. Proc. Roy. Soc. Edinburgh 138A, 67–107 (2008)

    Google Scholar 

  12. Escobedo, M., Velázquez, J.J.L.: On a linearized coagulation equation. In preparation

  13. Leyvraz F.: Scaling Theory and Exactly Solved Models in the Kinetics of Irreversible Aggregation. Phys. Repts. 383(2–3), 95–212 (2003)

    Article  ADS  Google Scholar 

  14. Leyvraz F., Tschudi H.R.: Singularities in the kinetics of coagulation processes. J. Phys. A 14, 3389–3405 (1981)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Makino J., Fukushige T., Funato Y., Kokubo E.: On the mass distribution of planetesimals in the early runaway stage. New Astronomy 3, 411–417 (1998)

    Article  ADS  Google Scholar 

  16. Muskhelishvili, N.I.: Singular Integral Equations. Translated from second edition, Moscow (1946) by J.R.M. Radok. Groningen: Noordhof, 1953

  17. Noble B.: Methods based on the Wiener-Hopf Technique. Second edition. Chelsea Publishing Company, New York (1988)

    Google Scholar 

  18. Stewart I.W.: On the coagulation-fragmentation equation. Z. Angew. Math. Phys. 41, 917–924 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  19. Stewart I.W.: Density conservation for a coagulation equation. Z. Angew. Math. Phys. 42, 746–756 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  20. Tanaka H., Inaba S., Nakaza K.: Steady-state size distribution for the self-similar collision cascade. Icarus 123, 450–455 (1996)

    Article  ADS  Google Scholar 

  21. Wagner W.: Post-gelation behaviour of a spatial coagulation model. Electronic J. Prob. 11, 893–933 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Escobedo.

Additional information

Communicated by A. Kupiainen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escobedo, M., Velázquez, J.J.L. On the Fundamental Solution of a Linearized Homogeneous Coagulation Equation. Commun. Math. Phys. 297, 759–816 (2010). https://doi.org/10.1007/s00220-010-1058-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1058-z

Keywords

Navigation