Skip to main content
Log in

Quantum Isometries and Noncommutative Spheres

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We introduce and study two new examples of noncommutative spheres: the half-liberated sphere, and the free sphere. Together with the usual sphere, these two spheres have the property that the corresponding quantum isometry group is “easy”, in the representation theory sense. We present as well some general comments on the axiomatization problem, and on the “untwisted” and “non-easy” case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banica T.: Le groupe quantique compact libre U(n). Commun. Math. Phys. 190, 143–172 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Banica T., Collins B.: Integration over compact quantum groups. Publ. Res. Inst. Math. Sci. 43, 277–302 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Banica T., Collins B.: Integration over the Pauli quantum group. J. Geom. Phys. 58, 942–961 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Banica, T., Collins, B., Schlenker, J.-M.: On orthogonal matrices maximizing the 1-norm. http://arxiv.org/abs/0901.2923v1[math.FA], 2009

  5. Banica T., Collins B., Zinn-Justin P.: Spectral analysis of the free orthogonal matrix, Int. Math. Res. Not. 2009, 3289–3309 (2009)

    Google Scholar 

  6. Banica T., Speicher R.: Liberation of orthogonal Lie groups. Adv. Math. 222, 1461–1501 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Banica, T., Vergnioux, R.: Invariants of the half-liberated orthogonal group. http://arxiv.org/abs/0902.2719v2[math.QA], 2009

  8. Bhowmick J., Goswami D.: Quantum isometry groups: examples and computations.. Commun. Math. Phys. 285, 421–444 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Bhowmick, J., Goswami, D.: Quantum group of orientation preserving Riemannian isometries. http://arxiv.org/abs/0806.3687v2[math.QA], 2008

  10. Bhowmick, J., Goswami, D.: Quantum isometry groups of the Podles spheres. http://arxiv.org/abs/0810.0658v4[math.QA], 2009

  11. Bhowmick, J., Goswami, D., Skalski, A.: Quantum isometry groups of 0-dimensional manifolds. Trans. Amer. Math. Soc., to appear

  12. Collins B., Śniady P.: Integration with respect to the Haar measure on the unitary, orthogonal and symplectic group. Commun. Math. Phys. 264, 773–795 (2006)

    Article  MATH  ADS  Google Scholar 

  13. Connes A.: Noncommutative geometry. Academic Press, London-Newyork (1994)

    MATH  Google Scholar 

  14. Connes A., Dubois-Violette M.: Noncommutative finite-dimensional manifolds I: spherical manifolds and related examples. Commun. Math. Phys. 230, 539–579 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Connes A., Dubois-Violette M.: Noncommutative finite dimensional manifolds II: moduli space and structure of noncommutative 3-spheres. Commun. Math. Phys. 281, 23–127 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Connes A., Landi G.: Noncommutative manifolds, the instanton algebra and isospectral deformations. Commun. Math. Phys. 221, 141–160 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. D’Andrea, F., Landi, G.: Bounded and unbounded Fredholm modules for quantum projective spaces. http://arxiv.org/abs/0903.3553v1[math.QA], 2009

  18. Dabrowski L., D’Andrea F., Landi G., Wagner E.: Dirac operators on all Podles quantum spheres. J. Noncommut. Geom. 1, 213–239 (2007)

    MathSciNet  Google Scholar 

  19. Di Francesco P.: Meander determinants. Commun. Math. Phys. 191, 543–583 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Dyson F.J.: The threefold way. Algebraic structure of symmetry groups and ensembles in quantum mechanics. J. Math. Phys. 3, 1199–1215 (1962)

    MATH  MathSciNet  Google Scholar 

  21. Goswami D.: Quantum group of isometries in classical and noncommutative geometry. Commun. Math. Phys. 285, 141–160 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  22. Podleś P.: Quantum spheres. Lett. Math. Phys. 14, 193–202 (1987)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Varilly J.C.: Quantum symmetry groups of noncommutative spheres. Commun. Math. Phys. 221, 511–524 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Wang S.: Free products of compact quantum groups. Commun. Math. Phys. 167, 671–692 (1995)

    Article  MATH  ADS  Google Scholar 

  25. Woronowicz S.L.: Compact matrix pseudogroups. Commun. Math. Phys. 111, 613–665 (1987)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Woronowicz S.L.: Tannaka-Krein duality for compact matrix pseudogroups. Twisted SU(N) groups, Invent. Math. 93, 35–76 (1988)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teodor Banica.

Additional information

Communicated by A. Connes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banica, T., Goswami, D. Quantum Isometries and Noncommutative Spheres. Commun. Math. Phys. 298, 343–356 (2010). https://doi.org/10.1007/s00220-010-1060-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1060-5

Keywords

Navigation