Skip to main content

Advertisement

Log in

Convolution Inequalities for the Boltzmann Collision Operator

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study integrability properties of a general version of the Boltzmann collision operator for hard and soft potentials in n-dimensions. A reformulation of the collisional integrals allows us to write the weak form of the collision operator as a weighted convolution, where the weight is given by an operator invariant under rotations. Using a symmetrization technique in L p we prove a Young’s inequality for hard potentials, which is sharp for Maxwell molecules in the L 2 case. Further, we find a new Hardy-Littlewood-Sobolev type of inequality for Boltzmann collision integrals with soft potentials. The same method extends to radially symmetric, non-increasing potentials that lie in some \({L^{s}_{weak}}\) or L s. The method we use resembles a Brascamp, Lieb and Luttinger approach for multilinear weighted convolution inequalities and follows a weak formulation setting. Consequently, it is closely connected to the classical analysis of Young and Hardy-Littlewood-Sobolev inequalities. In all cases, the inequality constants are explicitly given by formulas depending on integrability conditions of the angular cross section (in the spirit of Grad cut-off). As an additional application of the technique we also obtain estimates with exponential weights for hard potentials in both conservative and dissipative interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alexandre R., Desvillettes L., Villani C., Wennberg B.: Entropy dissipation and long range interactions. Arch. Rat. Mech. Anal. 152(4), 327–355 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alonso R.: Existence of global solutions to the Cauchy problem for the inelastic Boltzmann equation with near-vacuum data. Indiana Univ. Math. J. 58(3), 999–1022 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alonso R., Carneiro E.: Estimates for the Boltzmann collision operator via radial symmetry and Fourier transform. Adv. Math. 223(2), 511–528 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alonso R.J., Gamba I.M.: L 1L -Maxwellian bounds for the derivatives of the solution of the homogeneous Boltzmann equation. J. Math. Pures et Appl. (9) 89(6), 575–595 (2008)

    MATH  MathSciNet  Google Scholar 

  5. Alonso R.J., Gamba I.M.: Distributional and classical solutions to the Cauchy-Boltzmann problem for soft potentials with integrable angular cross section. J. Stat. Phys. 137(5–6), 1147–1165 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Alonso, R.J., Lods, B.: Free cooling of granular gases with variable restitution coefficient. In preparation

  7. Beckner W.: Inequalities in Fourier analysis. Ann. Math. (2) 102(1), 159–182 (1975)

    Article  MathSciNet  Google Scholar 

  8. Benedetto D., Pulvirenti M.: On the one-dimensional Boltzmann equation for granular flow. Math. Model. Numer. Anal. 35(5), 899–905 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bobylev A.: The method of the Fourier transform in the theory of the Boltzmann equation for Maxwell molecules. Dokl. Akad. Nauk SSSR 225(6), 1041–1044 (1975)

    MathSciNet  ADS  Google Scholar 

  10. Bobylev A.: The theory of the nonlinear, spatially uniform Boltzmann equation for Maxwellian molecules. Sov. Sci. Rev. C. Math. Phys. 7, 111–233 (1988)

    MathSciNet  Google Scholar 

  11. Bobylev A.: Moment inequalities for the Boltzmann equation and applications to spatially homogeneous problems. J. Stat. Phys. 88(5–6), 1183–1214 (1997)

    MATH  MathSciNet  ADS  Google Scholar 

  12. Bobylev A.V., Carrillo J.A., Gamba I.M.: On some properties of kinetic and hydrodynamic equations for inelastic interactions. J. Stat. Phys. 98(3–4), 743–773 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bobylev A., Cercignani C.: Self-similar asymptotics for the Boltzmann equation with inelastic and elastic interactions. J. Stat. Phys. 110, 333–375 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bobylev A., Cercignani C., Gamba I.M.: On the self-similar asymptotics for generalized non-linear kinetic Maxwell models. Commun. Math. Phys. 291, 599–644 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Bobylev A., Cercignani C., Toscani G.: Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular materials. J. Stat. Phys. 111, 403–417 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Bobylev A., Gamba I.M., Panferov V.: Moment inequalities and high-energy tails for Boltzmann equations with inelastic interactions. J. Stat. Phys. 116, 1651–1682 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Brascamp H.J., Lieb E.H.: Best constants in Young’s inequality, its converse, and its generalization to more than three functions. Adv. Math. 20, 151–173 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  18. Brascamp H.J., Lieb E., Luttinger J.M.: A general rearrangement inequality for multiple integrals. J. Funct. Anal. 17, 227–237 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  19. Brilliantov N., Pöschel T.: Kinetic theory of granular gases. Oxford Univ. Press, Oxford (2004)

    Book  MATH  Google Scholar 

  20. Cercignani, C., Illner, R., Pulvirenti, M.: The mathematical theory of dilute gases. Applied Mathematical Sciences, Vol. 106, New York: Springer-Verlag, 1994

  21. Desvillettes L.: About the use of the Fourier transform for the Boltzmann equation. Riv. Mat. Univ. Parma. 7, 1–99 (2003)

    MathSciNet  Google Scholar 

  22. Duduchava R., Kirsch R., Rjasanow S.: On estimates of the Boltzmann collision operator with cutoff. J. Math. Fluid Mech. 8(2), 242–266 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Gamba I.M., Panferov V., Villani C.: Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation. Arch. Rat. Mech. Anal 194, 253–282 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Gamba I.M., Panferov V., Villani C.: On the Boltzmann equation for diffusively excited granular media. Commun. Math. Phys. 246(3), 503–541 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Gamba I.M., Sri Harsha Tharkabhushaman: Spectral-Lagrangian based methods applied to computation of non-equilibrium statistical states. J. Comput. Phys. 228, 2012–2036 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Gustafsson T.: Global L p properties for the spatially homogeneous Boltzmann equation. Arch. Rat. Mech. Anal. 103, 1–38 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kirsch R., Rjasanow S.: A weak formulation of the Boltzmann equation based on the Fourier Transform. J. Stat. Phys. 129, 483–492 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Lieb E.H.: Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Ann. of Math. (2) 118(2), 349–374 (1983)

    Article  MathSciNet  Google Scholar 

  29. Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics, v. 14, Providence, RI: Amer. Math. Soc., 2001

  30. Mischler S., Mouhot C., Ricard M.R.: Cooling process for inelastic Boltzmann equations for hard spheres. Part I: The Cauchy problem. J. Stat. Phys. 124, 655–702 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Mouhot C., Villani C.: Regularity theory for the spatially homogeneous Boltzmann equation with cut-off. Arch. Rat. Mech. Anal. 173, 169–212 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Villani, C.: A review of mathematical topics in collisional kinetic theory. Handbook of mathematical fluid dynamics, Vol. I, Amsterdam: North-Holland, 2002, pp. 71–305

  33. Zygmund, A.: Trigonometric Series, Vol. II, Cambridge University Press, 1959

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene M. Gamba.

Additional information

Communicated by H.-T. Yau

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alonso, R.J., Carneiro, E. & Gamba, I.M. Convolution Inequalities for the Boltzmann Collision Operator. Commun. Math. Phys. 298, 293–322 (2010). https://doi.org/10.1007/s00220-010-1065-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1065-0

Keywords

Navigation