Skip to main content
Log in

Geometrization and Generalization of the Kowalevski Top

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A new view on the Kowalevski top and the Kowalevski integration procedure is presented. For more than a century, the Kowalevski 1889 case, has attracted full attention of a wide community as the highlight of the classical theory of integrable systems. Despite hundreds of papers on the subject, the Kowalevski integration is still understood as a magic recipe, an unbelievable sequence of skillful tricks, unexpected identities and smart changes of variables. The novelty of our present approach is based on our four observations. The first one is that the so-called fundamental Kowalevski equation is an instance of a pencil equation of the theory of conics which leads us to a new geometric interpretation of the Kowalevski variables w, x 1, x 2 as the pencil parameter and the Darboux coordinates, respectively. The second is observation of the key algebraic property of the pencil equation which is followed by introduction and study of a new class of discriminantly separable polynomials. All steps of the Kowalevski integration procedure are now derived as easy and transparent logical consequences of our theory of discriminantly separable polynomials. The third observation connects the Kowalevski integration and the pencil equation with the theory of multi-valued groups. The Kowalevski change of variables is now recognized as an example of a two-valued group operation and its action. The final observation is surprising equivalence of the associativity of the two-valued group operation and its action to the n = 3 case of the Great Poncelet Theorem for pencils of conics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Appel’rot, G.G.: Some suplements to the memoir of N. B. Delone. Tr. otd. fiz. nauk, 6 (1893)

  2. Audin, M.: Spinning Tops. An introduction to integrable systems. Cambridge studies in advanced mathematics 51, Cambridge: Cambridge Univ. Press, 1999

  3. Berger, M.: Geometry. Berlin: Springer-Verlag, 1987

    Google Scholar 

  4. Bobenko A.I., Reyman A.G., Semenov-Tian-Shansky M.A.: The Kowalevski top 99 years later: a Lax pair, generalizations and explicit solutions. Commun. Math. Phys. 122, 321–354 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Buchstaber, V.M., Novikov, S.P.: Formal groups, power systems and Adams operators. Mat. Sb. (N. S) 84 (126), 81–118 (1971) (in Russian)

    MathSciNet  Google Scholar 

  6. Buchstaber V.M., Rees E.G.: Multivalued groups, their representations and Hopf algebras. Transform. Groups 2, 325–349 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Buchstaber V.M., Veselov A.P.: Integrable correspondences and algebraic representations of multivalued groups. Internat. Math. Res. Notices 1996, 381–400 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Buchstaber V.: n-valued groups: theory and applications. Moscow Math. J. 6, 57–84 (2006)

    MATH  MathSciNet  Google Scholar 

  9. Darboux, G.: Principes de géométrie analytique. Paris: Gauthier-Villars, 1917, 519 p

    MATH  Google Scholar 

  10. Darboux, G.: Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitesimal. Volumes 2 and 3, Paris: Gauthier-Villars, 1887, 1889

  11. Delone, N.B.: Algebraic integrals of motion of a heavy rigid body around a fixed point. Petersburg, 1892

  12. Dragović V.: Multi-valued hyperelliptic continuous fractions of generalized Halphen type. Internat. Math. Res. Notices 2009, 1891–1932 (2009)

    MATH  Google Scholar 

  13. Dragović, V.: Marden theorem and Poncelet-Darboux curves. http://arXiv./org/abs/0812.4829v1[math.CA], 2008

  14. Dragović V., Gajić B.: Systems of Hess-Appel’rot type. Commun. Math. Phys. 265, 397–435 (2006)

    Article  MATH  ADS  Google Scholar 

  15. Dragović V., Radnović M.: Geometry of integrable billiards and pencils of quadrics. J. Math. Pures Appl. 85, 758–790 (2006)

    MATH  MathSciNet  Google Scholar 

  16. Dragović V., Radnović M.: Hyperelliptic Jacobians as Billiard Algebra of Pencils of Quadrics: Beyond Poncelet Porisms. Adv. Math. 219, 1577–1607 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dubrovin B.: Theta - functions and nonlinear equations. Usp. Math. Nauk 36, 11–80 (1981)

    MathSciNet  Google Scholar 

  18. Dullin H.R., Richter P.H., Veselov A.P.: Action variables of the Kowalevski top. Reg. Chaotic Dynam. 3, 18–26 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Euler L.: Evolutio generalior formularum comparationi curvarum inservientium. Opera Omnia Ser 1 20, 318–356 (1765)

    Google Scholar 

  20. Golubev, V.V.: Lectures on the integration of motion of a heavy rigid body around a fixed point. Moscow: Gostechizdat, 1953 [in Russian], English translations: Israel Program for Scientific washington, DC: US Dept. of Commerce, Off, of Tech. Serv., 1960

  21. Hirota, R.: The direct mthod in soliton theory. Cambridge Tracts in Mathematics 155, Cambridge: Cambridge Univ. Press, 2004

  22. Horozov E., van Moerbeke P.: The full geometry of Kowalevski’s top and (1,2)-abelian surfaces. Comm. Pure Appl. Math. 42, 357–407 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  23. Jurdjevic V.: Integrable Hamiltonian systems on Lie Groups: Kowalevski type. Ann. Math. 150, 605–644 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kotter F.: Sur le cas traite par M-me Kowalevski de rotation d’un corps solide autour d’un point fixe. Acta Math. 17, 209–263 (1893)

    Article  MathSciNet  Google Scholar 

  25. Kowalevski S.: Sur la probleme de la rotation d’un corps solide autour d’un point fixe. Acta Math. 12, 177–232 (1889)

    Article  MathSciNet  Google Scholar 

  26. Kowalevski S.: Sur une propriete du systeme d’equations differentielles qui definit la rotation d’un corps solide autour d’un point fixe. Acta Math. 14, 81–93 (1889)

    Article  MathSciNet  Google Scholar 

  27. Kuznetsov, V.B.: Kowalevski top revisted. CRM Proc. Lecture Notes 32, Providence, RI: Amer. Math. Soc., 2002, pp. 181–196

  28. Markushevich D.: Kowalevski top and genus-2 curves. J. Phys. A 34(11), 2125–2135 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. Mlodzeevskii, B.K.: About a case of motion of a heavy rigid body around a fixed point. Mat. Sb. 18 (1895)

  30. Poncelet, J.V.: Traité des propriétés projectives des figures. Paris: Mett, 1822

    Google Scholar 

  31. Vein, R., Dale, P.: Determinants and their applications in Mathematical Physics. Appl. Math. Sciences 134, Berlin-Heidelberg-New York: Springer, 1999

  32. Veselov A.P., Novikov S.P.: Poisson brackets and complex tori. Trudy Mat. Inst. Steklov 165, 49–61 (1984)

    MATH  MathSciNet  Google Scholar 

  33. Weil, A.: Euler and the Jacobians of elliptic curves. In: Arithmetics and Geometry, Vol. 1, Progr. Math. 35, Boston, MA: Birkhauser, 1983, pp. 353–359

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Dragović.

Additional information

Communicated by M. Aizenman

Dedicated to my teacher Boris Anatol’evich Dubrovin on the occasion of his sixtieth birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dragović, V. Geometrization and Generalization of the Kowalevski Top. Commun. Math. Phys. 298, 37–64 (2010). https://doi.org/10.1007/s00220-010-1066-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1066-z

Keywords

Navigation