Skip to main content
Log in

Asymptotic Stability, Concentration, and Oscillation in Harmonic Map Heat-Flow, Landau-Lifshitz, and Schrödinger Maps on \({\mathbb R^2}\)

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the Landau-Lifshitz equations of ferromagnetism (including the harmonic map heat-flow and Schrödinger flow as special cases) for degree m equivariant maps from \({\mathbb {R}^2}\) to \({\mathbb {S}^2}\) . If m ≥ 3, we prove that near-minimal energy solutions converge to a harmonic map as t → ∞ (asymptotic stability), extending previous work (Gustafson et al., Duke Math J 145(3), 537–583, 2008) down to degree m = 3. Due to slow spatial decay of the harmonic map components, a new approach is needed for m = 3, involving (among other tools) a “normal form” for the parameter dynamics, and the 2D radial double-endpoint Strichartz estimate for Schrödinger operators with sufficiently repulsive potentials (which may be of some independent interest). When m = 2 this asymptotic stability may fail: in the case of heat-flow with a further symmetry restriction, we show that more exotic asymptotics are possible, including infinite-time concentration (blow-up), and even “eternal oscillation”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angenent, S., Hulshof, J.: Singularities at t = ∞ in equivariant harmonic map flow. Contemp. Math. 367, Geometric evolution equations, Providence, RI: Amer. Math. Soc., 2005, pp. 1–15

  2. Bejenaru, I., Ionescu, A., Kenig, C., Tataru, D.: Global Schrödinger maps in dimensions d ≥ 2: small data in the critical Sobolev spaces. http://arxiv.org/abs/0807.0265v1 [math.AP], 2008

  3. Bergh J., Löfström J.: Interpolation spaces. Springer-Verlag, Berlin-Heidelberg-New York (1976)

    MATH  Google Scholar 

  4. Burq N., Planchon F., Stalker J., Tahvildar-Zadeh S.: Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay. Ind. U. Math. J 53(6), 519–549 (2004)

    MathSciNet  Google Scholar 

  5. Chang K.-C., Ding W.Y., Ye R.: Finite-time blow-up of the heat flow of harmonic maps from surfaces. J. Diff. Geom. 36(2), 507–515 (1992)

    MATH  MathSciNet  Google Scholar 

  6. Chang N.-H., Shatah J., Uhlenbeck K.: Schrödinger maps. Comm. Pure Appl. Math. 53(5), 590–602 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Germain P., Shatah J., Zeng C.: Self-similar solutions for the Schrödinger map equation. Math. Z. 264(3), 697–707 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Grotowski J.F., Shatah J.: Geometric evolution equations in critical dimensions. Calc. Var. Part. Diff. Eqs. 30(4), 499–512 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Guan, M., Gustafson, S., Kang, K., Tsai, T.-P.: Global Questions for Map Evolution Equations. CRM Proc. Lec. Notes 44, Providence, RI: Amer. Math. Soc., 2008, pp. 61–73

  10. Guan M., Gustafson S., Tsai T.-P.: Global existence and blow-up for harmonic map heat flow. J. Diff. Eq. 246, 1–20 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gustafson S., Kang K., Tsai T.-P.: Schrödinger flow near harmonic maps. Comm. Pure Appl. Math. 60(4), 463–499 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gustafson S., Kang K., Tsai T.-P.: Asymptotic stability of harmonic maps under the Schrödinger flow. Duke Math. J. 145(3), 537–583 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kosevich A., Ivanov B., Kovalev A.: Magnetic Solitons. Phys. Rep. 194, 117–238 (1990)

    Article  ADS  Google Scholar 

  14. Keel M., Tao T.: Endpoint Strichartz estimates. Amer. J. Math. 120, 955–980 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Machihara S., Nakanishi K., Ozawa T.: Nonrelativistic limit in the energy space for the nonlinear Klein-Gordon equations. Math. Ann. 322(3), 603–621 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Montgomery-Smith S.J.: Time decay for the bounded mean oscillation of solutions of the Schrödinger and wave equations. Duke Math. J. 91(2), 393–408 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. O’Neil R.: Convolution operators and L(p,q) spaces. Duke Math. J. 30, 129–142 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  18. Poláčik P., Yanagida E.: On bounded and unbounded global solutions of a supercritical semilinear heat equation. Math. Ann. 327, 745–771 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Struwe M.: On the evolution of harmonic mappings of Riemannian surfaces. Comment. Math. Helv. 60, 558–581 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  20. Tao T.: Spherically averaged endpoint Strichartz estimates for the two-dimensional Schrödinger equation. Comm. PDE 25(7–8), 1471–1485 (2000)

    MATH  Google Scholar 

  21. Topping P.M.: Rigidity in the harmonic map heat flow. J. Diff. Geom. 45, 593–610 (1997)

    MATH  MathSciNet  Google Scholar 

  22. Topping P.M.: Winding behaviour of finite-time singularities of the harmonic map heat flow. Math. Z. 247, 279–302 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Nakanishi.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gustafson, S., Nakanishi, K. & Tsai, TP. Asymptotic Stability, Concentration, and Oscillation in Harmonic Map Heat-Flow, Landau-Lifshitz, and Schrödinger Maps on \({\mathbb R^2}\) . Commun. Math. Phys. 300, 205–242 (2010). https://doi.org/10.1007/s00220-010-1116-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1116-6

Keywords

Navigation