Skip to main content
Log in

Meixner Class of Non-commutative Generalized Stochastic Processes with Freely Independent Values II. The Generating Function

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let T be an underlying space with a non-atomic measure σ on it. In [Comm. Math. Phys. 292, 99–129 (2009)] the Meixner class of non-commutative generalized stochastic processes with freely independent values, \({\omega=(\omega(t))_{t\in T}}\) , was characterized through the continuity of the corresponding orthogonal polynomials. In this paper, we derive a generating function for these orthogonal polynomials. The first question we have to answer is: What should serve as a generating function for a system of polynomials of infinitely many non-commuting variables? We construct a class of operator-valued functions \({Z=(Z(t))_{t\in T}}\) such that Z(t) commutes with ω(s) for any \({s,t\in T}\). Then a generating function can be understood as \({G(Z,\omega)=\sum_{n=0}^\infty \int_{T^n}P^{(n)}(\omega(t_1),\dots,\omega(t_n))Z(t_1)\dots Z(t_n)}\) \({\sigma(dt_1)\,\dots\,\sigma(dt_n)}\) , where \({P^{(n)}(\omega(t_1),\dots,\omega(t_n))}\) is (the kernel of the) n th orthogonal polynomial. We derive an explicit form of G(Z, ω), which has a resolvent form and resembles the generating function in the classical case, albeit it involves integrals of non-commuting operators. We finally discuss a related problem of the action of the annihilation operators \({\partial_t,t \in T}\) . In contrast to the classical case, we prove that the operators ∂ t related to the free Gaussian and Poisson processes have a property of globality. This result is genuinely infinite-dimensional, since in one dimension one loses the notion of globality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anshelevich M.: Free martingale polynomials. J. Funct. Anal. 201, 228–261 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Anshelevich M.: Free Meixner states. Commun. Math. Phys. 276, 863–899 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Anshelevich M.: Orthogonal polynomials with a resolvent-type generating function. Trans. Amer. Math. Soc. 360, 4125–4143 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berezansky Y.M., Lytvynov E., Mierzejewski D.A.: The Jacobi field of a Lévy process. Ukrainian Math. J. 55, 853–858 (2003)

    Article  MathSciNet  Google Scholar 

  5. Berezansky, Y.M., Sheftel, Z.G., Us, G.F.: Functional analysis. Vol. I, II. Basel: Birkhäuser Verlag, 1996

  6. Bożejko M., Bryc W.: On a class of free Lévy laws related to a regression problem. J. Funct. Anal. 236, 59–77 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Biane P., Speicher R.: Stochastic calculus with respect to free Brownian motion and analysis on Wigner space. Probab. Theory Related Fields 112, 373–409 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bożejko M., Demni N.: Generating functions of Cauchy–Stieltjes type for orthogonal polynomials. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 12, 91–98 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bożejko M., Leinert M., Speicher R.: Convolutions and limit theoerems for conditionally free random variables. Pacific J. Math. 175, 357–388 (1996)

    MATH  MathSciNet  Google Scholar 

  10. Bożejko M., Lytvynov E.: Meixner class of non-commutative generalized stochastic processes with freely independent values I. A characterization. Commun. Math. Phys. 292, 99–129 (2009)

    Article  MATH  ADS  Google Scholar 

  11. Chihara T.S.: An introduction to orthogonal polynomials. New York-London-Paris, Gordon and Breach Science Publishers (1978)

    MATH  Google Scholar 

  12. Hudson R.L., Parthasarathy K.R.: Quantum Ito’s formula and stochastic evolutions. Commun. Math. Phys. 93, 301–323 (1984)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Lytvynov E.: Polynomials of Meixner’s type in infinite dimensions—Jacobi fields and orthogonality measures. J. Funct. Anal. 200, 118–149 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lytvynov E.: Orthogonal decompositions for Lévy processes with an application to the gamma, Pascal, and Meixner processes. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 6, 73–102 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lytvynov E., Rodionova I.: Lowering and raising operators for the free Meixner class of orthogonal polynomials. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 12, 387–399 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Meixner J.: Orthogonale Polynomsysteme mit einem besonderen Gestalt der erzeugenden Funktion. J. London Math. Soc. 9, 6–13 (1934)

    Article  MATH  Google Scholar 

  17. Parthasarathy K.R.: An introduction to quantum stochastic calculus. Birkhäuser Verlag, Basel (1992)

    Book  MATH  Google Scholar 

  18. Rodionova I.: Analysis connected with generating functions of exponential type in one and infinite dimensions. Methods Funct. Anal. Topology 11, 275–297 (2005)

    MATH  MathSciNet  Google Scholar 

  19. Saitoh N., Yoshida H.: The infinite divisibility and orthogonal polynomials with a constant recursion formula in free probability theory. Probab. Math. Statist. 21, 159–170 (2001)

    MATH  MathSciNet  Google Scholar 

  20. Yosida K.: Functional analysis. Springer-Verlag, Sixth edition. Berlin-New York (1980)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Lytvynov.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bożejko, M., Lytvynov, E. Meixner Class of Non-commutative Generalized Stochastic Processes with Freely Independent Values II. The Generating Function. Commun. Math. Phys. 302, 425–451 (2011). https://doi.org/10.1007/s00220-010-1134-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1134-4

Keywords

Navigation